Universal Polynomial Majorants on Convex Bodies

András Kroó ${ }^{1}$
Alfréd Rényi Mathematical Institute, Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, H-1053 Hungary
Communicated by Peter B. Borwein

Received December 2, 1999; accepted in revised form February 20, 2001;
published online June 18, 2001

Abstract

Let \mathbf{K} be a convex body in $\mathbb{R}^{d}(d \geqslant 2)$, and denote by $B_{n}(\mathbf{K})$ the set of all polynomials p_{n} in \mathbb{R}^{d} of total degree $\leqslant n$ such that $\left|p_{n}\right| \leqslant 1$ on \mathbf{K}. In this paper we consider the following question: does there exist a $p_{n}^{*} \in B_{n}(\mathbf{K})$ which majorates every element of $B_{n}(\mathbf{K})$ outside of \mathbf{K} ? In other words can we find a minimal $\gamma \geqslant 1$ and $p_{n}^{*} \in B_{n}(\mathbf{K})$ so that $\left|p_{n}(\mathbf{x})\right| \leqslant \gamma\left|p_{n}^{*}(\mathbf{x})\right|$ for every $p_{n} \in B_{n}(\mathbf{K})$ and $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}$? We discuss the magnitude of γ and construct the universal majorants p_{n}^{*} for even n. It is shown that γ can be 1 only on ellipsoids. Moreover, $\gamma=O(1)$ on polytopes and has at most polynomial growth with respect to n, in general, for every convex body K. © 2001 Academic Press Key Words: convex bodies; polynomial majorants; polytopes; polytopal approximation.

Let $\mathbf{K} \subset \mathbb{R}^{d}, d \geqslant 2$, be a convex body i.e., it is a convex compact set with nonempty interior in \mathbb{R}^{d}. Consider the space P_{n}^{d} of polynomials on \mathbb{R}^{d} of total degree $\leqslant n$, endowed with the usual supremum norm on \mathbf{K}. Then the unit ball in this space is given by

$$
B_{n}(\mathbf{K}):=\left\{p \in P_{n}^{d}:\|p\|_{C(\mathbf{K})} \leqslant 1\right\} .
$$

In this paper we address the following question: is there a "largest" polynomial in $B_{n}(\mathbf{K})$ which majorates all elements of $B_{n}(\mathbf{K})$ everywhere on $\mathbb{R}^{d} \backslash \mathbf{K}$? In other words does there exist a $\gamma \geqslant 1$ and $p_{n}^{*} \in B_{n}(\mathbf{K})$ such that

$$
\begin{equation*}
\left|p_{n}(\mathbf{x})\right| \leqslant \gamma\left|p_{n}^{*}(\mathbf{x})\right|, \quad \forall p_{n} \in B_{n}(\mathbf{K}), \quad \forall \mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K} ? \tag{1}
\end{equation*}
$$

Such a p_{n}^{*} majorates all $p_{n} \in B_{n}(\mathbf{K})$ at every point outside \mathbf{K} (with the constant γ). In this sense p_{n}^{*} is a universal majorant for polynomials in $B_{n}(\mathbf{K})$. Naturally, we are interested in the smallest possible $\gamma \geqslant 1$ for which (1) holds with some $p_{n}^{*} \in B_{n}(\mathbf{K})$. Thus we set $\gamma_{n}(\mathbf{K}):=\inf \{\gamma$: there exists a $p_{n}^{*} \in B_{n}(\mathbf{K})$ so that (1) holds $\}$.

[^0]The above definition is motivated by the classical inequality of Chebyshev (see [1, p. 235]) stating that when $d=1$ and $K=[-1,1]$ we have

$$
\begin{equation*}
\left|p_{n}(x)\right| \leqslant\left|T_{n}(x)\right|, \quad \forall p_{n} \in B_{n}([-1,1]), \quad \forall|x|>1, \tag{2}
\end{equation*}
$$

where $T_{n}(x)=\cos n \operatorname{arc} \cos x$ is the Chebyshev polynomial. This means in our terminology that $\gamma_{n}([-1,1])=1$ for every $n \in \mathbb{N}$, with $\pm T_{n}$ being the universal majorants.

In this paper we shall study the magnitude of $\gamma_{n}(\mathbf{K})$ when $d>1$ and \mathbf{K} is a convex body in \mathbb{R}^{d}. First, it has to be noted that the above question is meaningful only for even $n \in \mathbb{N}$, because $\gamma_{2 n+1}(\mathbf{K})=\infty$ whenever $d>1$ and $n \in \mathbb{N}$. Indeed, if $\gamma_{2 n+1}(\mathbf{K})<\infty$, i.e., a universal majorant $p_{2 n+1}^{*} \in$ $B_{2 n+1}(\mathbf{K})$ exists, then it follows from (1) that $\operatorname{deg} p_{2 n+1}^{*}=2 n+1$ (and not less), and $p_{2 n+1}^{*} \neq 0$ on $\mathbb{R}^{d} \backslash \mathbf{K}$. Since $d>1$ we can easily find a line $\mathbf{L}=\left\{\mathbf{a} t+\mathbf{b}: t \in \mathbb{R}^{1}\right\}$ in $\mathbb{R}^{d}\left(\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}\right)$ so that $\mathbf{L} \cap \mathbf{K}=\varnothing$ and the univariate polynomial $p_{2 n+1}^{*}(\mathbf{a} t+\mathbf{b})$ has degree $2 n+1$. This yields that $p_{2 n+1}^{*}$ $\left(\mathbf{a} t_{0}+\mathbf{b}\right)=0$ for some $t_{0} \in \mathbb{R}^{1}$ contradicting the above observation that $p_{2 n+1}^{*} \neq 0$ on $\mathbb{R}^{d} \backslash \mathbf{K}$.

On the other hand for even n one can give a simple example of a universal majorant in $\mathbb{R}^{d}, d>1$. In what follows $|\mathbf{x}|$ denotes the Euclidean norm in $\mathbb{R}^{d}(d \geqslant 1),\langle\mathbf{x}, \mathbf{y}\rangle$ stands for the inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}, \operatorname{Bd} \mathbf{K}$ and Int \mathbf{K} are the boundary and interior of \mathbf{K}, respectively.

Example 1. Let $\mathbf{K}=\left\{\mathbf{x} \in \mathbb{R}^{d}:|\mathbf{x}| \leqslant 1\right\}$ be the Euclidean unit ball in \mathbb{R}^{d}. Then $\gamma_{2 n}(\mathbf{K})=1$ with $p_{2 n}^{*}(\mathbf{x})=T_{2 n}(|\mathbf{x}|) \in B_{2 n}(\mathbf{K})$ being a universal majorant. This follows immediately from (2) since $T_{2 n}(t), t \in \mathbb{R}^{1}$ is an even polynomial.

Using affine transformations of \mathbb{R}^{d} the above example can be easily extended to arbitrary ellipsoids which means that $\gamma_{2 n}(\mathbf{K})=1$ for any ellipsoid \mathbf{K}. Our first result gives a converse to this showing that $\gamma_{2 n}(\mathbf{K})$ can attain its minimal value 1 only on ellipsoids.

Theorem 1. Let $\mathbf{K} \subset \mathbb{R}^{d}, d \geqslant 2$, be a convex body; $n \in \mathbb{N}$. Then $\gamma_{2 n}(\mathbf{K})=1$ if and only if \mathbf{K} is an ellipsoid, i.e., $\mathbf{K}=\left\{\mathbf{x} \in \mathbb{R}^{d}:|\mathbf{A x}+\mathbf{b}| \leqslant 1\right\}$ for some $\mathbf{A} \in$ $\mathbb{R}^{d} \times \mathbb{R}^{d}(\operatorname{det} \mathbf{A} \neq 0)$ and $\mathbf{b} \in \mathbb{R}^{d}$. Moreover, in this case $p_{2 n}^{*}= \pm T_{2 n}(|\mathbf{A x}+\mathbf{b}|)$ are the only universal majorants.

Thus apart from ellipsoids we always have $\gamma_{2 n}(\mathbf{K})>1$. It turns out that $\gamma_{2 n}(\mathbf{K})=O(1)$ with a constant independent of n whenever \mathbf{K} is a polytope. For a polytope \mathbf{K} we shall denote by $f_{j}(\mathbf{K})$ the number of its j-dimensional faces, $0 \leqslant j \leqslant d-1$.

Theorem 2. Let \mathbf{K} be a convex polytope in $\mathbb{R}^{d}, d \geqslant 2$. Then for every $n \in \mathbb{N}$

$$
\begin{equation*}
\gamma_{2 n}(\mathbf{K}) \leqslant \sum_{j=1}^{d-2} f_{j}(\mathbf{K}) f_{d-j-1}(\mathbf{K})+2 f_{d-1}(\mathbf{K}) \tag{3}
\end{equation*}
$$

Moreover, if \mathbf{K} is central symmetric then we have $\gamma_{2 n}(\mathbf{K}) \leqslant f_{d-1}(\mathbf{K})$.
Using the above theorem and some known results on degree of approximation of convex bodies by polytopes with prescribed number of vertices or faces we can verify that $\gamma_{2 n}(\mathbf{K})$ has at most polynomial growth in n for every convex body \mathbf{K}. Namely we have the next

Theorem 3. Let \mathbf{K} be a convex body in \mathbb{R}^{d}, $d \geqslant 2$. Then for every $n \in \mathbb{N}$

$$
\begin{equation*}
\gamma_{2 n}(\mathbf{K}) \leqslant c(d, \mathbf{K}) n^{d(d-1)}, \tag{4}
\end{equation*}
$$

where $c(d, \mathbf{K})>0$ depends only on d and \mathbf{K}.
Note that in general, polynomials bounded by 1 on \mathbf{K} can grow exponentially outside \mathbf{K}. Thus the polynomial growth $\gamma_{2 n}(\mathbf{K})=O\left(n^{d(d-1)}\right)$ given by Theorem 3 is very small relative to the size of polynomials $p_{n} \in B_{n}(\mathbf{K})$ outside of \mathbf{K}. The estimate (4) can be improved further if \mathbf{K} has a C_{+}^{2}-boundary, i.e., its second fundamental form exists on $\mathrm{Bd} \mathbf{K}$ and the Gauss curvature is a positive continuous function on $\mathrm{Bd} \mathbf{K}$.

Theorem 4. If \mathbf{K} is a convex body in $\mathbb{R}^{d}(d \geqslant 2)$ with a C_{+}^{2}-boundary then $\gamma_{2 n}(\mathbf{K})=O\left(n^{2(d-1)}\right)$.

Above estimates can be used in order to obtain results on approximation of convex surfaces by algebraic surfaces. (We call zero sets of $p_{n} \in P_{n}^{d}$ algebraic surfaces of order n.) Denote by $\varrho(\mathbf{A}, \mathbf{B})$ the Hausdorff distance between $\mathbf{A}, \mathbf{B} \subset \mathbb{R}^{\mathbf{d}}$.

Theorem 5. For any convex body \mathbf{K} in $\mathbb{R}^{d}(d \geqslant 2)$ there exists an algebraic surface $\boldsymbol{\Omega}_{n}$ of order n such that $\varrho\left(B d \mathbf{K}, \boldsymbol{\Omega}_{n}\right) \leqslant c\left(\frac{\log n}{n}\right)^{2}$, where $c>0$ depends only on \mathbf{K} and d.

This paper is organized as follows. Section 1 contains some material on the geometry of convex bodies needed for our considerations. In Section 2 the proofs of Theorem 1-5 will be given. Finally, we shall conclude the paper by a discussion of some open problems.

1. GEOMETRY

First we need to introduce a certain quantity $\alpha_{k}(\mathbf{x})$ which measures the distance from a given $\mathbf{x} \in \mathbb{R}^{d}$ to the boundary $\mathrm{Bd} \mathbf{K}$ of a convex body $\mathbf{K} \subset \mathbb{R}^{d}$. This quantity was used in [5] and [6] for the study of multivariate Chebyshev and Bernstein Inequalities.

For given $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d}$ and $\mathbf{u} \in \mathbf{S}^{d-1}:=\left\{\mathbf{x} \in \mathbb{R}^{d}:|\mathbf{x}|=1\right\}$ such that $\langle\mathbf{u}, \mathbf{B}-\mathbf{A}\rangle$ >0 consider the corresponding "slab" given by

$$
\mathbf{S}_{\mathbf{u}}(\mathbf{A}, \mathbf{B}):=\left\{\mathbf{x} \in \mathbb{R}^{d}:\langle\mathbf{u}, \mathbf{A}\rangle \leqslant\langle\mathbf{u}, \mathbf{x}\rangle \leqslant\langle\mathbf{u}, \mathbf{B}\rangle\right\} .
$$

For a fixed $\alpha>0$ the " α-dilation" of this slab is defined by $\mathbf{S}_{\mathbf{u}}^{\alpha}(\mathbf{A}, \mathbf{B}):=$ $\left\{\mathbf{x} \in \mathbb{R}^{d}:\langle\mathbf{u}, \mathbf{A}\rangle-\delta_{\alpha} \leqslant\langle\mathbf{u}, \mathbf{x}\rangle \leqslant\langle\mathbf{u}, \mathbf{B}\rangle+\delta_{\alpha}\right\}$ where $\delta_{\alpha}:=\frac{\alpha-1}{2}\langle\mathbf{B}-\mathbf{A}, \mathbf{u}\rangle$. Finally, set $\mathbf{K}_{\alpha}:=\bigcap\left\{\mathbf{S}_{\mathbf{u}}^{\alpha}(\mathbf{A}, \mathbf{B}): \mathbf{S}_{\mathbf{u}}(\mathbf{A}, \mathbf{B}) \supset \mathbf{K}, \mathbf{A}, \mathbf{B} \in \mathbb{R}^{d}, \mathbf{u} \in \mathbf{S}^{d-1}\right\}, \alpha_{\mathbf{K}}(\mathbf{x})$ $:=\inf \left\{\alpha: \mathbf{x} \in \mathbf{K}_{\alpha}\right\}$.

Clearly, $\alpha_{\mathbf{K}}(\mathbf{x})>1$ for $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}, \alpha_{\mathbf{K}}(\mathbf{x})=1$ on $\mathrm{Bd} \mathbf{K}$, and $\alpha_{\mathbf{K}}(\mathbf{x})<1$ inside \mathbf{K}. Also, it is easy to see that when \mathbf{K} is central symmetric about $\mathbf{0}$ then $\alpha_{K}(\mathbf{x})=\inf \left\{\alpha>0: \frac{\mathbf{x}}{\alpha} \in \mathbf{K}\right\}$ is the usual Minkowski functional. It is proved in [6] that for every $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}$

$$
\begin{equation*}
\sup \left\{\left|p_{n}(\mathbf{x})\right|: p_{n} \in B_{n}(\mathbf{K})\right\}=T_{n}\left(\alpha_{K}(\mathbf{x})\right) . \tag{5}
\end{equation*}
$$

We shall also need the following lemmas on parallel supporting hyperplanes which are proved in [5] and [6]. (A special case of Lemma 1 also appears in [7].)

Lemma 1. Let $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}$. Then there exists a line \mathbf{L} passing through \mathbf{x} with $\mathbf{K} \cap \mathbf{L}=[\mathbf{A}, \mathbf{B}]$, such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and B. Moreover, for any such line

$$
\begin{equation*}
\alpha_{\mathbf{K}}(\mathbf{x})=\left|\mathbf{x}-\frac{\mathbf{A}+\mathbf{B}}{2}\right| / \frac{|\mathbf{A}-\mathbf{B}|}{2} . \tag{6}
\end{equation*}
$$

For the proof of the above statement see [6], Corollary 1 and the proof of Theorem 1A on p. 422. The next lemma provides a similar statement for inner points of \mathbf{K}.

Lemma 2. Let $\mathbf{x} \in \operatorname{Int} \mathbf{K}$. Then there exists a line \mathbf{L} passing through \mathbf{x} with $\mathbf{K} \cap \mathbf{L}=[\mathbf{A}, \mathbf{B}]$ such that (6) holds, and \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B}.

Note a slight difference in the statements of Lemmas 1 and 2: when $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}$ by Lemma 1 (6) holds for every \mathbf{L} as above, while for $\mathbf{x} \in \operatorname{Int} \mathbf{K}$ by Lemma 2 (6) holds for some \mathbf{L} as above.

The first statement of Lemma 2 asserting that (6) holds for a certain line as above is a consequence of Proposition 2 in [5]. The second statement concerning parallel supporting hyperplanes is Proposition 1 of [5].

2. PROOFS

Proof of Theorem 1. The sufficiency in Theorem 1 is straightforward, it follows by a change of variables $\mathbf{y}=\mathbf{A x}+\mathbf{b}\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}\right)$ and Example 1 .

Assume now that $\mathbf{K} \subset \mathbb{R}^{d}$ is such that $\gamma_{2 n}(\mathbf{K})=1$, and $p_{2 n}^{*} \in B_{2 n}(\mathbf{K})$ is a corresponding universal majorant, so that

$$
\left|p_{2 n}(\mathbf{x})\right| \leqslant\left|p_{2 n}^{*}(\mathbf{x})\right|, \quad p_{2 n} \in B_{2 n}(\mathbf{K}), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K} .
$$

Then it easily follows from (5) that

$$
\left|p_{2 n}^{*}(\mathbf{x})\right| \equiv T_{2 n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K} .
$$

In particular, we have that for every $\mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K}$ either $p_{2 n}^{*}(\mathbf{x}) \equiv T_{n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right)$, or $p_{2 n}^{*}(\mathbf{x}) \equiv-T_{n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right)$. Thus we may assume that

$$
\begin{equation*}
p_{2 n}^{*}(\mathbf{x}) \equiv T_{2 n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K} . \tag{7}
\end{equation*}
$$

First we shall verify that equality (7) holds for $\mathbf{x} \in \mathbf{K}$, as well. Choose any $\tilde{\mathbf{x}} \in \operatorname{Int} \mathbf{K}$. Then by Lemma 2 there exists a line \mathbf{L} through $\tilde{\mathbf{x}}$ with $\mathbf{L} \cap \mathbf{K}=[\mathbf{A}, \mathbf{B}]$ such that

$$
\begin{equation*}
\alpha_{\mathbf{K}}(\tilde{\mathbf{x}})=\frac{\left|\tilde{\mathbf{x}}-\frac{\mathbf{A}+\mathbf{B}}{2}\right|}{\left|\frac{\mathbf{A}-\mathbf{B}}{2}\right|}, \tag{8}
\end{equation*}
$$

and \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B}. Let

$$
\tilde{\mathbf{x}}=\frac{1-\tilde{t}}{2} \mathbf{A}+\frac{1+\tilde{t}}{2} \mathbf{B},
$$

where it can be assumed that $0 \leqslant \tilde{t} \leqslant 1$. Then by (8), $\alpha_{\mathbf{K}}(\tilde{\mathbf{x}})=\tilde{t}$. Moreover, by Lemma 1 for every $\mathbf{x} \in \mathbf{L} \backslash \mathbf{K}$ equality (6) holds, i.e. setting $\mathbf{x}_{t}=$ $\frac{1-t}{2} \mathbf{A}+\frac{1+t}{2} \mathbf{B}$ we have $\alpha_{\mathbf{K}}\left(\mathbf{x}_{t}\right)=t, t>1$. This and (7) yield that

$$
p_{2 n}^{*}\left(\mathbf{x}_{t}\right) \equiv T_{2 n}(t), \quad t>1 .
$$

But of course the above equality of univariate polynomials has to extend from $\left\{t \in \mathbb{R}^{1}: t>1\right\}$ to the whole line, i.e.,

$$
\begin{equation*}
p_{2 n}^{*}\left(\frac{1-t}{2} \mathbf{A}+\frac{1+t}{2} \mathbf{B}\right) \equiv T_{2 n}(t), \quad t \in \mathbb{R} . \tag{9}
\end{equation*}
$$

In particular, setting in (9) $t=\tilde{t}$ we obtain $p_{2 n}^{*}(\tilde{\mathbf{x}})=T_{2 n}(\tilde{t})=T_{2 n}\left(\alpha_{\mathbf{K}}(\tilde{\mathbf{x}})\right)$. Thus and by (7)

$$
\begin{equation*}
p_{2 n}^{*}(\mathbf{x}) \equiv T_{2 n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right), \quad \mathbf{x} \in \mathbb{R}^{d} . \tag{10}
\end{equation*}
$$

The next step is to verify that \mathbf{K} is central symmetric. Set

$$
\alpha_{0}:=\inf _{\mathbf{x} \in \mathbf{K}} \alpha_{\mathbf{K}}(\mathbf{x}), \quad \mathbf{K}_{0}:=\bigcap_{\alpha>\alpha_{0}} \mathbf{K}_{\alpha} .
$$

Clearly, $\alpha_{0} \geqslant 0, \mathbf{K}_{0} \neq \varnothing$ and Int $\mathbf{K}_{\alpha} \neq \varnothing, \alpha>\alpha_{0}$. Furthermore, for every $x \in \mathbf{K}_{0}$ we have $\alpha_{\mathbf{K}}(\mathbf{x}) \leqslant \alpha_{0}$, i.e., by minimality of α_{0} it follows that $\alpha_{\mathbf{K}}(\mathbf{x})=\alpha_{0}$ whenever $\mathbf{x} \in \mathbf{K}_{0}$. This last observation implies that \mathbf{K}_{0} must be a singleton. Indeed, if $\mathbf{a}^{*}, \mathbf{b}^{*} \in \mathbf{K}_{0}\left(\mathbf{a}^{*} \neq \mathbf{b}^{*}\right)$ then $\left[\mathbf{a}^{*}, \mathbf{b}^{*}\right] \subset \mathbf{K}_{0}$, and hence $\alpha_{\mathbf{K}}(\mathbf{x})=\alpha_{0}$ for $\mathbf{x} \in\left[\mathbf{a}^{*}, \mathbf{b}^{*}\right]$. This and (10) yield that $p_{2 n}^{*} \equiv T_{2 n}\left(\alpha_{0}\right)$ on the line \mathbf{L}^{*} through \mathbf{a}^{*} and \mathbf{b}^{*}, in an obvious contradiction with (10). Thus $\mathbf{K}_{0}=\left\{\mathbf{a}^{*}\right\}$. Consider now a line \mathbf{L}^{*} through \mathbf{a}^{*} with $\mathbf{K} \cap \mathbf{L}^{*}=\left[\mathbf{A}^{*}, \mathbf{B}^{*}\right]$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A}^{*} and \mathbf{B}^{*} (Lemma 2). By (9) and (10) we have with $\mathbf{x}_{t}^{*}=\frac{1-t}{2} \mathbf{A}^{*}+\frac{1+t}{2} \mathbf{B}^{*}$

$$
\begin{equation*}
T_{2 n}(t)=p_{2 n}^{*}\left(\mathbf{x}_{t}^{*}\right)=T_{2 n}\left(\alpha_{\mathbf{K}}\left(\mathbf{x}_{t}^{*}\right)\right), \quad t \in \mathbb{R}^{1} . \tag{11}
\end{equation*}
$$

As t increases from -1 to 1 the continuous function $\alpha_{\mathbf{K}}\left(\mathbf{x}_{t}^{*}\right)$ decreases from 1 to α_{0}, and then increases from α_{0} to 1 . Thus in view of (11) we must have $\alpha_{0}=0$, and $\mathbf{a}^{*}=\mathbf{x}_{0}^{*}=\left(\mathbf{A}^{*}+\mathbf{B}^{*}\right) / 2$. (In particular, Int $\mathbf{K}_{\alpha} \neq \varnothing$ for every $\alpha>0$.) Similarly for any $\mathbf{A} \in \operatorname{Bd} \mathbf{K}$ there exists a $\mathbf{B} \in \operatorname{Bd} \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B}. Thus using again (9) and (10)

$$
T_{2 n}(t)=T_{2 n}\left(\alpha_{\mathbf{K}}\left(\frac{1-t}{2} \mathbf{A}+\frac{1+t}{2} \mathbf{B}\right)\right), \quad t \in \mathbb{R} .
$$

Again, as t varies in $[-1,1] \alpha_{\mathbf{K}}\left(\frac{1-t}{2} \mathbf{A}+\frac{1+t}{2} \mathbf{B}\right)$ must decrease from 1 to 0 and then increase from 0 to 1 . Hence $[\mathbf{A}, \mathbf{B}]$ must contain \mathbf{a}^{*} (otherwise
$\alpha_{\mathbf{K}}\left(\frac{1-t}{2} \mathbf{A}+\frac{1+t}{2} \mathbf{B}\right)$ can not attain 0$)$, and, in addition, $\mathbf{a}^{*}=\frac{\mathbf{A}+\mathbf{B}}{2}$. Thus for every $\mathbf{A} \in \operatorname{Bd} \mathbf{K}$ the line through \mathbf{A} and \mathbf{a}^{*} exits \mathbf{K} at $\mathbf{B}=2 \mathbf{a}^{*}-\mathbf{A}$. This means that \mathbf{K} is central symmetric about \mathbf{a}^{*}.

We may assume now that $\mathbf{a}^{*}=\mathbf{0}$ and \mathbf{K} is symmetric about the origin. Then $\alpha_{\mathbf{K}}(t \mathbf{x})=t \alpha_{\mathbf{K}}(\mathbf{x})$ whenever $\mathbf{x} \in \mathbb{R}^{d}$ and $t>0$. The polynomial $p_{2 n}^{*}$ can be written as $p_{2 n}^{*}(\mathbf{x})=\sum_{j=0}^{2 n} h_{j}(\mathbf{x})$, where h_{j} is its j th homogeneous part, $0 \leqslant j \leqslant 2 n$. Furthermore $T_{2 n}(t)=\sum_{j=0}^{n} c_{j} t^{2 j}$, where $c_{j} \in \mathbb{R}, 0 \leqslant j \leqslant n$. Then for every $\mathbf{u} \in \mathbf{S}^{d-1}$ and $t>0$

$$
\begin{aligned}
p_{2 n}^{*}(t \mathbf{u}) & =\sum_{j=0}^{2 n} h_{j}(t \mathbf{u})=\sum_{j=0}^{2 n} t^{j} h_{j}(\mathbf{u}), \\
T_{2 n}\left(\alpha_{\mathbf{K}}(t \mathbf{u})\right)= & T_{2 n}\left(t \alpha_{\mathbf{K}}(\mathbf{u})\right)=\sum_{j=0}^{n} c_{j} \alpha_{\mathbf{K}}^{2 j}(\mathbf{u}) t^{2 j} .
\end{aligned}
$$

Hence using (10) we obtain

$$
\sum_{j=0}^{2 n} h_{j}(\mathbf{u}) t^{j}=\sum_{j=0}^{n} c_{j} \alpha_{\mathbf{K}}^{2 j}(\mathbf{u}) t^{2 j}, \quad \mathbf{u} \in \mathbf{S}^{d-1}, \quad t>0
$$

This means that $h_{2 j}(\mathbf{u})=c_{j} \alpha_{\mathbf{K}}^{2 j}(\mathbf{u})$ for every $\mathbf{u} \in \mathbf{S}^{d-1}$. In particular

$$
\alpha_{\mathbf{K}}^{2}(\mathbf{u})=\frac{1}{c_{1}} h_{2}(\mathbf{u}):=H_{2}(\mathbf{u}), \quad u \in \mathbf{S}^{d-1} .
$$

Evidently, H_{2} is a positive definite quadratic form, i.e.

$$
K=\left\{\mathbf{x} \in \mathbb{R}^{d}: \alpha_{\mathbf{K}}(\mathbf{x}) \leqslant 1\right\}=\left\{\mathbf{x} \in \mathbb{R}^{d}: H_{2}(\mathbf{x}) \leqslant 1\right\}
$$

is an ellipsoid. In addition, by (10) the only possible majorants are $\pm T_{2 n}\left(\alpha_{\mathbf{K}}(\mathbf{x})\right)$.

Proof of Theorem 2. Let $\mathbf{K} \subset \mathbb{R}^{d}$ be a polytope. Consider $\mathbf{A}, \mathbf{B} \in \mathrm{Bd} \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes $\mathbf{H}_{\mathbf{A}}, \mathbf{H}_{\mathbf{B}}$ at \mathbf{A} and \mathbf{B}, and denote by $\mathscr{U}_{\mathbf{A B}}$ the set of normal vectors to such pairs of hyperplanes. Since \mathbf{K} is a polytope it is easy to see that for some $\mathbf{u} \in \mathscr{U}_{\mathbf{A B}}$ the corresponding pair of hyperplanes $\mathbf{H}_{\mathbf{A}}, \mathbf{H}_{\mathbf{B}}$ has the property that the faces $\mathbf{F}_{\mathbf{A}}=\mathbf{K} \cap$ $\mathbf{H}_{\mathbf{A}}$ and $\mathbf{F}_{\mathbf{B}}=\mathbf{K} \cap \mathbf{H}_{\mathbf{B}}$ of the polytope \mathbf{K} contain a total of $d-1$ linearly independent vectors. Let $\mathscr{U}(\mathbf{K}):=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{N}\right\} \subset \mathbf{S}_{+}^{d-1}:=\left\{\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in\right.$ $\left.\mathbf{S}^{d-1}: y_{1} \geqslant 0\right\}$ be the set of normal vectors to pairs of hyperplanes with the
above properties. Since every $\mathbf{u}_{j} \in \mathscr{U}(\mathbf{K}), 1 \leqslant j \leqslant N$, is uniquely determined by the corresponding pair of faces of \mathbf{K} specified above it follows that

$$
\begin{equation*}
N \leqslant \frac{1}{2} \sum_{j=1}^{d-2} f_{j}(\mathbf{K}) f_{d-j-1}(\mathbf{K})+f_{d-1}(\mathbf{K}) . \tag{12}
\end{equation*}
$$

Moreover, $\mathscr{U}(\mathbf{K}) \cap \mathscr{U}_{\mathbf{A B}} \neq \varnothing$ whenever \mathbf{K} possesses parallel supporting hyperplanes at $\mathbf{A}, \mathbf{B} \in \operatorname{Bd} \mathbf{K}$. Furthermore, for every $\mathbf{u}_{j} \in \mathscr{U}(\mathbf{K})$ select some $\mathbf{A}_{j}, \mathbf{B}_{j} \in \operatorname{Bd} \mathbf{K}$ such that $\mathbf{u}_{j} \in \mathscr{U}_{\mathbf{A}_{j} \mathbf{B}_{j}}, 1 \leqslant j \leqslant N$.

Finally, consider the polynomial $\widetilde{T}_{2 n}(t)=\left(T_{2 n}(t)+1\right) / 2 \in P_{2 n}^{1}$. Obviously $\tilde{T}_{2 n} \geqslant 0$ on $\mathbb{R}^{1}, \widetilde{T}_{2 n} \leqslant 1$ on $[-1,1]$, and $T_{2 n} \leqslant 2 \widetilde{T}_{2 n}$ on $\mathbb{R}^{1} \backslash[-1,1]$. Now we set

$$
\begin{equation*}
p_{2 n}^{*}(\mathbf{x})=\frac{1}{N} \sum_{j=1}^{N} \tilde{T}_{2 n}\left(\frac{\left\langle x-\frac{\mathbf{A}_{j}+\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle}{\left\langle\frac{\mathbf{A}_{j}-\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle}\right) . \tag{13}
\end{equation*}
$$

Clearly, $p_{2 n}^{*} \in P_{2 n}^{d}$. Moreover, we claim that $\left|p_{2 n}^{*}\right| \leqslant 1$ on \mathbf{K}, i.e., $p_{2 n}^{*} \in$ $B_{2 n}(\mathbf{K})$. Indeed, since \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A}_{j} and \mathbf{B}_{j} with normal \mathbf{u}_{j} we have (assuming, for instance that $\left\langle\mathbf{A}_{j}, \mathbf{u}_{j}\right\rangle<$ $\left.\left\langle\mathbf{B}_{j}, \mathbf{u}_{j}\right\rangle\right)\left\langle\mathbf{A}_{j}, \mathbf{u}_{j}\right\rangle \leqslant\left\langle\mathbf{x}, \mathbf{u}_{j}\right\rangle \leqslant\left\langle\mathbf{B}_{j}, \mathbf{u}_{j}\right\rangle, \mathbf{x} \in \mathbf{K}$. This easily implies

$$
\left|\left\langle\mathbf{x}-\frac{\mathbf{A}_{j}+\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle\right| \leqslant\left|\left\langle\frac{\mathbf{A}_{j}-\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle\right|, \quad \mathbf{x} \in \mathbf{K} .
$$

Since $\left|\widetilde{T}_{2 n}\right| \leqslant 1$ on $[-1,1]$ we obtain by (13) that $p_{2 n}^{*} \in B_{2 n}(\mathbf{K})$. Now we need to show that $p_{2 n}^{*}$ satisfies (1) with a proper γ. Consider an arbitrary $p_{2 n} \in B_{2 n}(\mathbf{K})$ and $\mathbf{x}^{*} \in \mathbb{R}^{d} \backslash \mathbf{K}$. By Lemma 1 there exists a line \mathbf{L} passing through \mathbf{x}^{*} with $\mathbf{K} \cap \mathbf{L}=\left[\mathbf{A}^{*}, \mathbf{B}^{*}\right]$ such that \mathbf{K} possesses parallel supporting hyperplanes at $\mathbf{A}^{*}, \mathbf{B}^{*} \in \mathrm{Bd} \mathbf{K}$. As it was observed above we can choose this pair of hyperplanes $\mathbf{H}_{\mathbf{A}^{*}}, \mathbf{H}_{\mathbf{B}^{*}}$ (keeping $\mathbf{A}^{*}, \mathbf{B}^{*}$ fixed) so that some $\mathbf{u}_{j} \in \mathscr{U}(\mathbf{K}), 1 \leqslant j \leqslant N$, is the normal to these hyperplanes. Then by (6) using that $\mathbf{x}^{*}, \mathbf{A}^{*}, \mathbf{B}^{*} \in \mathbf{L}$

$$
\begin{equation*}
\alpha_{\mathbf{K}}\left(\mathbf{x}^{*}\right)=\frac{\left|\mathbf{x}^{*}-\frac{\mathbf{A}^{*}+\mathbf{B}^{*}}{2}\right|}{\frac{\left|\mathbf{A}^{*}-\mathbf{B}^{*}\right|}{2}}=\left|\frac{\left\langle\mathbf{x}^{*}-\frac{\mathbf{A}^{*}+\mathbf{B}^{*}}{2}, \mathbf{u}_{j}\right\rangle}{\left\langle\frac{\mathbf{A}^{*}-\mathbf{B}^{*}}{2}, \mathbf{u}_{j}\right\rangle}\right| . \tag{14}
\end{equation*}
$$

Recall that earlier we have already chosen $\mathbf{A}_{j}, \mathbf{B}_{j}$ from the pair of hyperplanes $\mathbf{H}_{\mathbf{A}^{*}}, \mathbf{H}_{\mathbf{B}^{*}}$ (with normal \mathbf{u}_{j}). Hence without loss of generality, \mathbf{A}^{*}, $\mathbf{A}_{j} \in \mathbf{H}_{\mathbf{A}^{*}}, \mathbf{B}^{*}, \mathbf{B}_{j} \in \mathbf{H}_{\mathbf{B}^{*}}$, i.e., $\mathbf{A}^{*}-\mathbf{A}_{j}$ and $\mathbf{B}^{*}-\mathbf{B}_{j}$ are normal to \mathbf{u}_{j}. Thus using (5), (14) and (13) we have for $p_{2 n} \in B_{2 n}(\mathbf{K})$

$$
\begin{aligned}
\left|p_{2 n}\left(\mathbf{x}^{*}\right)\right| & \leqslant T_{2 n}\left(\alpha_{\mathbf{K}}\left(x^{*}\right)\right) \leqslant 2 \widetilde{T}_{2 n}\left(\alpha_{\mathbf{K}}\left(\mathbf{x}^{*}\right)\right) \\
& =2 \tilde{T}_{2 n}\left(\frac{\left\langle\mathbf{x}^{*}-\frac{\mathbf{A}_{j}+\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle}{\left\langle\frac{\mathbf{A}_{j}-\mathbf{B}_{j}}{2}, \mathbf{u}_{j}\right\rangle}\right) \leqslant 2 N p_{2 n}^{*}\left(\mathbf{x}^{*}\right) .
\end{aligned}
$$

Finally by (12) we arrive at estimate (3).
If remains to verify the sharper bound $\gamma_{2 n}(\mathbf{K}) \leqslant f_{d-1}(\mathbf{K})$ in case when \mathbf{K} is a central symmetric polytope. Assume that $\mathbf{0}$ is the center of symmetry of \mathbf{K}. Clearly, \mathbf{K} has $M:=f_{d-1}(\mathbf{K}) / 2$ pairs of parallel $(d-1)$-dimensional faces. Denote by $\boldsymbol{\omega}_{j}, 1 \leqslant j \leqslant M$, the normals to these pairs of hyperplanes, and select any segments $\left[-\mathbf{A}_{j}, \mathbf{A}_{j}\right], 1 \leqslant j \leqslant M$ with endpoints in these pairs of faces. Finally, set

$$
\tilde{p}_{2 n}(\mathbf{x})=\frac{1}{M} \sum_{j=1}^{M} \tilde{T}_{2 n}\left(\frac{\left\langle\mathbf{x}, \boldsymbol{\omega}_{j}\right\rangle}{\left\langle\mathbf{A}_{j}, \boldsymbol{\omega}_{j}\right\rangle}\right) .
$$

As above, it follow that $\tilde{p}_{2 n} \in B_{2 n}(\mathbf{K})$. Now, for any $\mathbf{x}^{*} \in \mathbb{R}^{d} \backslash \mathbf{K}$ the line $\mathbf{L}:=\left\{t \mathbf{x}^{*}: t \in \mathbb{R}^{1}\right\}$ intersects $\mathrm{Bd} \mathbf{K}$ at some points $\pm \mathbf{B}$ which belong to a pair of parallel $(d-1)$-dimensional faces of \mathbf{K} with normal $\boldsymbol{\omega}_{k}$ for some $1 \leqslant k \leqslant M$. Then $\mathbf{B}-\mathbf{A}_{k} \perp \boldsymbol{\omega}_{k}$ and proceeding as above we can show that for any $p_{2 n} \in B_{2 n}(\mathbf{K})\left|p_{2 n}\left(\mathbf{x}^{*}\right)\right| \leqslant f_{d-1}(\mathbf{K}) \tilde{p}_{2 n}\left(\mathbf{x}^{*}\right)$, i.e., $\gamma_{2 n}(\mathbf{K}) \leqslant f_{d-1}(\mathbf{K})$.

Proofs of Theorems 3 and 4. Now we proceed to proving Theorems 3 and 4. Their proofs are based on the "polytopal" estimate (3) for $\gamma_{2 n}(\mathbf{K})$ on one side, and some known results on the rate of approximation of convex bodies by polytopes. One such result proved in [3] (see also [4]) asserts that for any convex body $\mathbf{K} \subset \mathbb{R}^{d}(d \geqslant 2)$ and $N \in \mathbb{N}$ there exists a polytope \mathbf{D} with $f_{0}(\mathbf{D})=N$ vertices so that

$$
\begin{equation*}
\varrho(\mathbf{K}, \mathbf{D}) \leqslant \frac{c}{N^{2 /(d-1)}} \tag{15}
\end{equation*}
$$

with an absolute constant $c>0$. (Here as above $\varrho(\mathbf{K}, \mathbf{D})$ stands for the Hausdorff distance between corresponding sets.) The approximating polytope \mathbf{D} is constructed in [3] to be circumscribed to \mathbf{K}, it can be modified in an obvious way to be inscribed into \mathbf{K}. Moreover it is shown
in [2] that if \mathbf{K} is C_{+}^{2} then for any $M \in \mathbb{N}$ there exists an inscribed polytope \mathbf{D} with $\max _{0 \leqslant j \leqslant d-1} f_{j}(\mathbf{D}) \leqslant M$ such that

$$
\begin{equation*}
\varrho(\mathbf{K}, \mathbf{D}) \leqslant \frac{c_{1}}{M^{2 /(d-1)}} \tag{1}
\end{equation*}
$$

with some $c_{1}>0$ depending on \mathbf{K}. In principle, (16) provides a stronger bound than (15) since it is known (see e.g. [8, p. 257]) that for any polytope D

$$
\begin{equation*}
f_{j}(\mathbf{D}) \leqslant c(d) f_{0}(\mathbf{D})^{[d / 2]}, \quad 1 \leqslant j \leqslant d-1, \tag{17}
\end{equation*}
$$

with some $c(d)$ depending only on d.
We shall also need the following well known corollary of Chebyshev Inequality (2): if $p_{n} \in P_{n}^{1}$ is a univariate polynomial and $\left|p_{n}\right| \leqslant 1$ on [$-1,1$] then

$$
\begin{equation*}
\left|p_{n}(t)\right| \leqslant e^{c_{0} n \sqrt{\delta}}, \quad|t| \leqslant 1+\delta \quad(0<\delta<1) \tag{18}
\end{equation*}
$$

with some absolute constant $c_{0}>0$.
After these preliminaries we turn to the proof of Theorem 3. Consider an arbitrary convex body \mathbf{K} in $\mathbb{R}^{d}(d \geqslant 2)$, and let $\mathbf{D} \subset \mathbf{K}$ be an inscribed polytope with $f_{0}(\mathbf{D})=N$ vertices so that (15) holds.

By estimate (3) of Theorem 2 and (17) we have $\gamma_{2 n}(\mathbf{D}) \leqslant c_{1}(d) N^{d}$. Thus there exists a universal majorant $p_{2 n}^{*} \in B_{2 n}(\mathbf{D})$ such that

$$
\begin{equation*}
\left|p_{2 n}(\mathbf{x})\right| \leqslant c_{1}(d) N^{d}\left|p_{2 n}^{*}(\mathbf{x})\right|, \quad p_{2 n} \in B_{2 n}(\mathbf{D}), \quad x \in \mathbb{R}^{d} \backslash \mathbf{D} . \tag{19}
\end{equation*}
$$

Since $\left|p_{2 n}^{*}\right| \leqslant 1$ on $\mathbf{D} \subset \mathbf{K}$ it follows by (15) and (18) that

$$
\begin{equation*}
\left\|p_{2 n}^{*}\right\|_{C(\mathbf{K})} \leqslant \exp \left[c_{2} n N^{1 /(1-d)}\right] \tag{20}
\end{equation*}
$$

with some $c_{2}>0$ depending on d and \mathbf{K}. Hence setting $N:=\left[n^{d-1}\right]+1$ and $\tilde{p}_{2 n}:=e^{-c_{2}} p_{2 n}^{*}$ we obtain by (20) that $\left|\tilde{p}_{2 n}\right| \leqslant 1$ on \mathbf{K}, i.e., $\tilde{p}_{2 n} \in B_{2 n}(\mathbf{K})$. Moreover, using (19) we have for every $p_{2 n} \in B_{2 n}(\mathbf{K}) \subset B_{2 n}(\mathbf{D})$ and $\mathbf{x} \in\left(\mathbb{R}^{d} \backslash \mathbf{K}\right) \subset\left(\mathbb{R}^{d} \backslash \mathbf{D}\right)$

$$
\left|p_{2 n}(\mathbf{x})\right| \leqslant c_{1}(d) e^{c_{2}} N^{d}\left|\tilde{p}_{2 n}(\mathbf{x})\right| \leqslant c_{3} n^{d(d-1)}\left|\tilde{p}_{2 n}(\mathbf{x})\right| .
$$

This verifies the upper bound (4) of Theorem 3.
The proof of Theorem 4 follows similarly by using estimate (16) with $M=\max _{0 \leqslant j \leqslant d-1} f_{j}(\mathbf{D})$ instead of (15). This together with (3) yields the bound $\gamma_{2 n}(\mathbf{D})=O\left(M^{2}\right)$. Finally, setting $M:=\left[n^{d-1}\right]+1$ we arrive at $\gamma_{2 n}(\mathbf{K})=O\left(n^{2(d-1)}\right)$. This completes the proof of Theorems 3 and 4 .

Remark. It can be shown that when \mathbf{K} is central symmetric the approximating polytopes satisfying (15) and (16) can also be chosen to be central symmetric. Moreover, for central symmetric polytopes D by Theorem 2 the sharper estimate $\gamma_{2 n}(\mathbf{D}) \leqslant f_{d-1}(\mathbf{D})$ holds. This bound leads to an improvement of the above estimates for $\gamma_{2 n}(\mathbf{K})$. Indeed similarly to the proofs of Theorems 3 and 4 we can verify that in this case $\gamma_{2 n}(\mathbf{K})=O\left(n^{d(d-1) / 2}\right)$, and $\gamma_{2 n}(\mathbf{K})=O\left(n^{d-1}\right)$ if, in addition, \mathbf{K} is also C_{+}^{2}.

Proof of Theorem 5. Consider an arbitrary point \mathbf{x}^{*} on the boundary of convex body \mathbf{K}. Let $p_{2 n}^{*} \in B_{2 n}(\mathbf{K})$ be a universal majorant in $B_{2 n}(\mathbf{K})$. Then by Theorem 3

$$
\begin{equation*}
\left|p_{2 n}(\mathbf{x})\right| \leqslant c n^{d(d-1)}\left|p_{2 n}^{*}(\mathbf{x})\right|, \quad p_{2 n} \in B_{2 n}(\mathbf{K}), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash \mathbf{K} \tag{21}
\end{equation*}
$$

We claim that there exists a point $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ with $\left|\mathbf{x}^{*}-\tilde{\mathbf{x}}\right|=O\left(\left(\frac{\log n}{n}\right)^{2}\right)$ such that $\left|p_{2 n}^{*}(\tilde{\mathbf{x}})\right|=1$. In order to show this assume that $\left|p_{2 n}^{*}\right| \leqslant 1$ in some ball $\mathbf{B}_{\delta}\left(\mathbf{x}^{*}\right)$ with center at x^{*} and radius $\delta>0$. Our claim will follow if we verify that such a δ must satisfy $\delta \leqslant c(\log n / n)^{2}$ for some $c>0$ independent of n. There exists $y^{*} \in \operatorname{Bd} \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{x}^{*} and \mathbf{y}^{*} with a normal $\mathbf{u}^{*} \in \mathbf{S}^{d-1}$. Let \mathbf{L} be the line through \mathbf{x}^{*} and \mathbf{y}^{*}. We may assume that $\left|\mathbf{x}^{*}-\mathbf{y}^{*}\right|=2$. (Clearly, $\left|\mathbf{x}^{*}-\mathbf{y}^{*}\right| \geqslant$ $\omega(\mathbf{K})$, where $\omega(\mathbf{K})$ is the minimal distance between parallel supporting hyperplanes to \mathbf{K}. Moreover $\left|\mathbf{x}^{*}-\mathbf{y}^{*}\right| \leqslant d(\mathbf{K}):=\max \{|\mathbf{x}-\mathbf{y}|: \mathbf{x}, \mathbf{y} \in \mathbf{K}\}$.) Set now $\mathbf{x}_{j}:=(1+j \delta / 2) \mathbf{x}^{*}-j \delta \mathbf{y}^{*} / 2, j=1,2$. Evidently, $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbf{L} \backslash \mathbf{K}$, $\left|\mathbf{x}_{1}-\mathbf{x}^{*}\right|=\delta$, and $\left|\mathbf{x}_{2}-\mathbf{x}^{*}\right|=2 \delta$.

Consider the polynomial

$$
p_{2 n}(\mathbf{x}):=T_{2 n}\left(\frac{\left\langle\mathbf{x}-\frac{\mathbf{x}^{*}+\mathbf{y}^{*}}{2}, \mathbf{u}^{*}\right\rangle}{\left\langle\frac{\mathbf{x}^{*}-\mathbf{y}^{*}}{2}, \mathbf{u}^{*}\right\rangle}\right)
$$

As in the proof of Theorem 2 it can be shown that $\left|p_{2 n}\right| \leqslant 1$ on \mathbf{K}, i.e., $p_{2 n} \in B_{2 n}(\mathbf{K})$. Then by (21) for $\mathbf{x}_{2} \in \mathbb{R}^{d} \backslash \mathbf{K}$

$$
\begin{equation*}
\left|p_{2 n}^{*}\left(\mathbf{x}_{2}\right)\right| \geqslant \frac{\left|p_{2 n}\left(\mathbf{x}_{2}\right)\right|}{c n^{d(d-1)}}=\frac{T_{2 n}(1+2 \delta)}{c n^{d(d-1)}} . \tag{22}
\end{equation*}
$$

On the other hand since $\left|\mathbf{x}^{*}-\mathbf{x}_{1}\right|=\delta$ and $\left|p_{2 n}^{*}\right| \leqslant 1$ on $\mathbf{B}_{\delta}\left(\mathbf{x}^{*}\right) \cup \mathbf{K}$, we obtain, in particular, that $\left|p_{2 n}^{*}\right| \leqslant 1$ on $\left[\mathbf{y}^{*}, \mathbf{x}_{1}\right]$, where $\left|\mathbf{y}^{*}-\mathbf{x}_{1}\right|=$ $\left(1+\frac{\delta}{2}\right)\left|\mathbf{x}^{*}-\mathbf{y}^{*}\right|=2+\delta$. Recall, that $\mathbf{y}^{*}, \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbf{L}$ where $\left|\left(\mathbf{y}^{*}+\mathbf{x}_{1}\right)\right|$ $2-\mathbf{x}_{2} \mid=1+3 \delta / 2$. Now, applying (2) to the univariate polynomial
$p_{2 n}^{*}\left(t\left(\mathbf{x}_{1}-\mathbf{y}^{*}\right)+\mathbf{x}_{1}\right) \in B_{n}\left(\left[\mathbf{y}^{*}, \mathbf{x}_{1}\right]\right),\left|\mathbf{x}_{1}-\mathbf{y}^{*}\right|=2+\delta$, at the point \mathbf{x}_{2} with $\left|\left(\mathbf{x}_{1}+\mathbf{y}^{*}\right) / 2-\mathbf{x}_{2}\right|=1+3 \delta / 2$ yields

$$
\left|p_{2 n}^{*}\left(\mathbf{x}_{2}\right)\right| \leqslant T_{2 n}(1+\delta) .
$$

This together with (22) implies

$$
\begin{equation*}
c n^{d(d-1)} T_{2 n}(1+\delta) \geqslant T_{2 n}(1+2 \delta) . \tag{23}
\end{equation*}
$$

Furthermore, it is well known (see [1, p. 30]) that

$$
\frac{1}{2}\left(t+\sqrt{t^{2}-1}\right)^{2 n} \leqslant T_{2 n}(t) \leqslant\left(t+\sqrt{t^{2}-1}\right)^{2 n}, \quad t>1 .
$$

This and (23) yield for $0<\delta \leqslant \delta_{0}$

$$
c n^{d(d-1)}(1+\sqrt{3 \delta})^{2 n} \geqslant \frac{1}{2}(1+2 \sqrt{\delta})^{2 n} .
$$

Hence

$$
1+c_{d} \frac{\log n}{n} \geqslant\left(2 c n^{d(d-1)}\right)^{1 / 2 n} \geqslant \frac{1+2 \sqrt{\delta}}{1+\sqrt{3 \delta}} \geqslant 1+c_{0} \sqrt{\delta},
$$

i.e. we obtain that $\delta=O\left(\left(\frac{\log n}{n}\right)^{2}\right)$. Thus since $\left|p_{2 n}^{*}\left(\mathbf{x}^{*}\right)\right| \leqslant 1$ there exists $\tilde{\mathbf{x}}$ such that $\left|\mathbf{x}^{*}-\tilde{\mathbf{x}}\right|=O\left((\log n / n)^{2}\right)$ and $\left|p_{2 n}^{*}(\tilde{\mathbf{x}})\right|=1$. Consider now the polynomial $g_{4 n}=\left(p_{2 n}^{*}\right)^{2}-1 \in P_{4 n}^{d}$. As we have shown above for every $\mathbf{x}^{*} \in \operatorname{Bd} \mathbf{K}$ there exists an $\tilde{\mathbf{x}}$ such that $g_{4 n}(\tilde{\mathbf{x}})=0$ and $\left|\mathbf{x}^{*}-\tilde{\mathbf{x}}\right| \leqslant c(\log n / n)^{2}$. This concludes the proof.

SOME OPEN PROBLEMS

The results proved above provide some insight on the magnitude of $\gamma_{2 n}(\mathbf{K})$, but a number of questions remains open. Namely it would be interesting to determine for what convex bodies \mathbf{K}

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \gamma_{2 n}(\mathbf{K})<\infty . \tag{24}
\end{equation*}
$$

We have seen above that (24) holds for ellipsoids and polytopes. Using similar methods we can verify that (24) is true for finite intersections of central-symmetric polytopes and ellipsoids having the same center. This means that (24) holds not only for ellipsoids and polytopes. Is (24) true for
every convex body $\mathbf{K} \subset \mathbb{R}^{d}$? Another open problem consists in characterizing those compact sets $\mathbf{K} \subset \mathbb{R}^{d}$ for which $\gamma_{2 n}(\mathbf{K})$ has subexponential growth, i.e.,

$$
\begin{equation*}
\lim \sup \gamma_{2 n}(\mathbf{K})^{1 / n}=1 . \tag{25}
\end{equation*}
$$

Theorem 3 implies, in particular, that (25) holds for every convex body $\mathbf{K} \subset \mathbb{R}^{d}$.

REFERENCES

1. P. Borwein and T. Erdélyi, "Polynomials and Polynomial Inequalities," Springer-Verlag, Berlin/New York, 1995.
2. K. Böröcky, Jr., Polytopal approximation bounding the number of k-faces, manuscript.
3. E. M. Bronshtein and L. D. Ivanov, The approximation of convex sets by polyhedra, Sibirsk. Math. Zh. 16 (1975), 1110-1112. [Siberian Math. J. 16 (1975), 852-853.]
4. P. M. Gruber, Aspects of approximation of convex bodies, in "Handbook of Convex Geometry A," pp. 319-345, North-Holland, Amsterdam, 1993.
5. A. Kroó and Sz. Révész, On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory 99 (1999), 134-152.
6. A. Kroó and D. Schmidt, Some extremal problems for multivariate polynomials on convex bodies, J. Approx. Theory 90 (1997), 415-434.
7. T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of approximation and minimization, J. Soc. Ind. Appl. Math. 9 (1961), 670-699.
8. G. M. Ziegler, "Lectures on Polytopes," Springer-Verlag, Berlin/New York, 1995.

[^0]: ${ }^{1}$ Supported by the Hungarian National Foundation for Scientific Research, Grant T023441.

