Universal Polynomial Majorants on Convex Bodies

András Kroó¹

Alfréd Rényi Mathematical Institute, Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13–15, H-1053 Hungary

Communicated by Peter B. Borwein

Received December 2, 1999; accepted in revised form February 20, 2001; published online June 18, 2001

Let **K** be a convex body in \mathbb{R}^d ($d \ge 2$), and denote by $B_n(\mathbf{K})$ the set of all polynomials p_n in \mathbb{R}^d of total degree $\le n$ such that $|p_n| \le 1$ on **K**. In this paper we consider the following question: does there exist a $p_n^* \in B_n(\mathbf{K})$ which majorates *every* element of $B_n(\mathbf{K})$ *outside* of **K**? In other words can we find a minimal $\gamma \ge 1$ and $p_n^* \in B_n(\mathbf{K})$ so that $|p_n(\mathbf{x})| \le \gamma |p_n^*(\mathbf{x})|$ for every $p_n \in B_n(\mathbf{K})$ and $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{R}$? We discuss the magnitude of γ and construct the universal majorants p_n^* for *even n*. It is shown that γ can be 1 only on *ellipsoids*. Moreover, $\gamma = O(1)$ on *polytopes* and has at most polynomial growth with respect to *n*, in general, for every convex body **K**. © 2001 Academic Press

Key Words: convex bodies; polynomial majorants; polytopes; polytopal approximation.

Let $\mathbf{K} \subset \mathbb{R}^d$, $d \ge 2$, be a convex body i.e., it is a convex compact set with nonempty interior in \mathbb{R}^d . Consider the space P_n^d of polynomials on \mathbb{R}^d of total degree $\le n$, endowed with the usual supremum norm on **K**. Then the unit ball in this space is given by

$$B_n(\mathbf{K}) := \{ p \in P_n^d : \| p \|_{C(\mathbf{K})} \leq 1 \}.$$

In this paper we address the following question: is there a "largest" polynomial in $B_n(\mathbf{K})$ which majorates all elements of $B_n(\mathbf{K})$ everywhere on $\mathbb{R}^d \setminus \mathbf{K}$? In other words does there exist a $\gamma \ge 1$ and $p_n^* \in B_n(\mathbf{K})$ such that

$$|p_n(\mathbf{x})| \leq \gamma |p_n^*(\mathbf{x})|, \qquad \forall p_n \in B_n(\mathbf{K}), \quad \forall \mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}?$$
(1)

Such a p_n^* majorates all $p_n \in B_n(\mathbf{K})$ at every point outside \mathbf{K} (with the constant γ). In this sense p_n^* is a universal majorant for polynomials in $B_n(\mathbf{K})$. Naturally, we are interested in the *smallest* possible $\gamma \ge 1$ for which (1) holds with some $p_n^* \in B_n(\mathbf{K})$. Thus we set $\gamma_n(\mathbf{K}) := \inf\{\gamma: \text{ there exists a } p_n^* \in B_n(\mathbf{K}) \text{ so that (1) holds} \}$.

¹ Supported by the Hungarian National Foundation for Scientific Research, Grant T023441.

The above definition is motivated by the classical inequality of Chebyshev (see [1, p. 235]) stating that when d=1 and K=[-1,1] we have

$$|p_n(x)| \le |T_n(x)|, \quad \forall p_n \in B_n([-1,1]), \quad \forall |x| > 1,$$
 (2)

where $T_n(x) = \cos n \arccos x$ is the Chebyshev polynomial. This means in our terminology that $\gamma_n([-1, 1]) = 1$ for every $n \in \mathbb{N}$, with $\pm T_n$ being the universal majorants.

In this paper we shall study the magnitude of $\gamma_n(\mathbf{K})$ when d > 1 and \mathbf{K} is a convex body in \mathbb{R}^d . First, it has to be noted that the above question is meaningful only for even $n \in \mathbb{N}$, because $\gamma_{2n+1}(\mathbf{K}) = \infty$ whenever d > 1 and $n \in \mathbb{N}$. Indeed, if $\gamma_{2n+1}(\mathbf{K}) < \infty$, i.e., a universal majorant $p_{2n+1}^* \in B_{2n+1}(\mathbf{K})$ exists, then it follows from (1) that deg $p_{2n+1}^* = 2n+1$ (and not less), and $p_{2n+1}^* \neq 0$ on $\mathbb{R}^d \setminus \mathbf{K}$. Since d > 1 we can easily find a line $\mathbf{L} = \{\mathbf{a}t + \mathbf{b} : t \in \mathbb{R}^1\}$ in \mathbb{R}^d ($\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$) so that $\mathbf{L} \cap \mathbf{K} = \emptyset$ and the *univariate* polynomial p_{2n+1}^* ($\mathbf{a}t + \mathbf{b}$) has degree 2n+1. This yields that p_{2n+1}^* ($\mathbf{a}_{2n+1} \neq 0$ on $\mathbb{R}^d \setminus \mathbf{K}$.

On the other hand for *even* n one can give a simple example of a universal majorant in \mathbb{R}^d , d > 1. In what follows $|\mathbf{x}|$ denotes the Euclidean norm in \mathbb{R}^d $(d \ge 1)$, $\langle \mathbf{x}, \mathbf{y} \rangle$ stands for the inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, Bd **K** and Int **K** are the boundary and interior of **K**, respectively.

EXAMPLE 1. Let $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \leq 1\}$ be the Euclidean unit ball in \mathbb{R}^d . Then $\gamma_{2n}(\mathbf{K}) = 1$ with $p_{2n}^*(\mathbf{x}) = T_{2n}(|\mathbf{x}|) \in B_{2n}(\mathbf{K})$ being a universal majorant. This follows immediately from (2) since $T_{2n}(t)$, $t \in \mathbb{R}^1$ is an even polynomial.

Using affine transformations of \mathbb{R}^d the above example can be easily extended to arbitrary ellipsoids which means that $\gamma_{2n}(\mathbf{K}) = 1$ for any ellipsoid **K**. Our first result gives a converse to this showing that $\gamma_{2n}(\mathbf{K})$ can attain its minimal value 1 *only* on ellipsoids.

THEOREM 1. Let $\mathbf{K} \subset \mathbb{R}^d$, $d \ge 2$, be a convex body; $n \in \mathbb{N}$. Then $\gamma_{2n}(\mathbf{K}) = 1$ if and only if \mathbf{K} is an ellipsoid, i.e., $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^d : |\mathbf{A}\mathbf{x} + \mathbf{b}| \le 1\}$ for some $\mathbf{A} \in \mathbb{R}^d \times \mathbb{R}^d$ (det $\mathbf{A} \neq 0$) and $\mathbf{b} \in \mathbb{R}^d$. Moreover, in this case $p_{2n}^* = \pm T_{2n}(|\mathbf{A}\mathbf{x} + \mathbf{b}|)$ are the only universal majorants.

Thus apart from ellipsoids we always have $\gamma_{2n}(\mathbf{K}) > 1$. It turns out that $\gamma_{2n}(\mathbf{K}) = O(1)$ with a constant *independent* of *n* whenever **K** is a *polytope*. For a polytope **K** we shall denote by $f_j(\mathbf{K})$ the number of its *j*-dimensional faces, $0 \le j \le d-1$.

THEOREM 2. Let **K** be a convex polytope in \mathbb{R}^d , $d \ge 2$. Then for every $n \in \mathbb{N}$

$$\gamma_{2n}(\mathbf{K}) \leqslant \sum_{j=1}^{d-2} f_j(\mathbf{K}) f_{d-j-1}(\mathbf{K}) + 2f_{d-1}(\mathbf{K}).$$
(3)

Moreover, if **K** is central symmetric then we have $\gamma_{2n}(\mathbf{K}) \leq f_{d-1}(\mathbf{K})$.

Using the above theorem and some known results on degree of approximation of convex bodies by polytopes with prescribed number of vertices or faces we can verify that $\gamma_{2n}(\mathbf{K})$ has at most polynomial growth in *n* for every convex body **K**. Namely we have the next

THEOREM 3. Let **K** be a convex body in \mathbb{R}^d , $d \ge 2$. Then for every $n \in \mathbb{N}$

$$\gamma_{2n}(\mathbf{K}) \leqslant c(d, \mathbf{K}) \, n^{d(d-1)},\tag{4}$$

where $c(d, \mathbf{K}) > 0$ depends only on d and \mathbf{K} .

Note that in general, polynomials bounded by 1 on **K** can grow *exponen*tially outside **K**. Thus the polynomial growth $\gamma_{2n}(\mathbf{K}) = O(n^{d(d-1)})$ given by Theorem 3 is very small relative to the size of polynomials $p_n \in B_n(\mathbf{K})$ outside of **K**. The estimate (4) can be improved further if **K** has a C_+^2 -boundary, i.e., its second fundamental form exists on Bd **K** and the Gauss curvature is a positive continuous function on Bd **K**.

THEOREM 4. If **K** is a convex body in \mathbb{R}^d $(d \ge 2)$ with a C^2_+ -boundary then $\gamma_{2n}(\mathbf{K}) = O(n^{2(d-1)})$.

Above estimates can be used in order to obtain results on approximation of convex surfaces by algebraic surfaces. (We call zero sets of $p_n \in P_n^d$ algebraic surfaces of order *n*.) Denote by $\varrho(\mathbf{A}, \mathbf{B})$ the Hausdorff distance between $\mathbf{A}, \mathbf{B} \subset \mathbb{R}^d$.

THEOREM 5. For any convex body **K** in \mathbb{R}^d $(d \ge 2)$ there exists an algebraic surface Ω_n of order *n* such that $\varrho(Bd \mathbf{K}, \Omega_n) \le c(\frac{\log n}{n})^2$, where c > 0 depends only on **K** and *d*.

This paper is organized as follows. Section 1 contains some material on the geometry of convex bodies needed for our considerations. In Section 2 the proofs of Theorem 1-5 will be given. Finally, we shall conclude the paper by a discussion of some open problems.

1. GEOMETRY

First we need to introduce a certain quantity $\alpha_k(\mathbf{x})$ which measures the distance from a given $\mathbf{x} \in \mathbb{R}^d$ to the boundary Bd **K** of a convex body $\mathbf{K} \subset \mathbb{R}^d$. This quantity was used in [5] and [6] for the study of multivariate Chebyshev and Bernstein Inequalities.

For given $\mathbf{A}, \mathbf{B} \in \mathbb{R}^d$ and $\mathbf{u} \in \mathbf{S}^{d-1} := \{\mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| = 1\}$ such that $\langle \mathbf{u}, \mathbf{B} - \mathbf{A} \rangle > 0$ consider the corresponding "slab" given by

$$\mathbf{S}_{\mathbf{u}}(\mathbf{A}, \mathbf{B}) := \{ \mathbf{x} \in \mathbb{R}^d : \langle \mathbf{u}, \mathbf{A} \rangle \leqslant \langle \mathbf{u}, \mathbf{x} \rangle \leqslant \langle \mathbf{u}, \mathbf{B} \rangle \}.$$

For a fixed $\alpha > 0$ the " α -dilation" of this slab is defined by $\mathbf{S}_{\mathbf{u}}^{\alpha}(\mathbf{A}, \mathbf{B}) := \{\mathbf{x} \in \mathbb{R}^{d} : \langle \mathbf{u}, \mathbf{A} \rangle - \delta_{\alpha} \leq \langle \mathbf{u}, \mathbf{x} \rangle \leq \langle \mathbf{u}, \mathbf{B} \rangle + \delta_{\alpha} \}$ where $\delta_{\alpha} := \frac{\alpha - 1}{2} \langle \mathbf{B} - \mathbf{A}, \mathbf{u} \rangle$. Finally, set $\mathbf{K}_{\alpha} := \bigcap \{ \mathbf{S}_{\mathbf{u}}^{\alpha}(\mathbf{A}, \mathbf{B}) : \mathbf{S}_{\mathbf{u}}(\mathbf{A}, \mathbf{B}) \supset \mathbf{K}, \mathbf{A}, \mathbf{B} \in \mathbb{R}^{d}, \mathbf{u} \in \mathbf{S}^{d-1} \}, \alpha_{\mathbf{K}}(\mathbf{x}) := \inf \{ \alpha : \mathbf{x} \in \mathbf{K}_{\alpha} \}.$

Clearly, $\alpha_{\mathbf{K}}(\mathbf{x}) > 1$ for $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}$, $\alpha_{\mathbf{K}}(\mathbf{x}) = 1$ on Bd **K**, and $\alpha_{\mathbf{K}}(\mathbf{x}) < 1$ inside **K**. Also, it is easy to see that when **K** is central symmetric about **0** then $\alpha_{\mathbf{K}}(\mathbf{x}) = \inf\{\alpha > 0: \frac{\mathbf{x}}{\alpha} \in \mathbf{K}\}$ is the usual Minkowski functional. It is proved in [6] that for every $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}$

$$\sup\{|p_n(\mathbf{x})|: p_n \in B_n(\mathbf{K})\} = T_n(\alpha_K(\mathbf{x})).$$
(5)

We shall also need the following lemmas on parallel supporting hyperplanes which are proved in [5] and [6]. (A special case of Lemma 1 also appears in [7].)

LEMMA 1. Let $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}$. Then there exists a line \mathbf{L} passing through \mathbf{x} with $\mathbf{K} \cap \mathbf{L} = [\mathbf{A}, \mathbf{B}]$, such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B} . Moreover, for any such line

$$\alpha_{\mathbf{K}}(\mathbf{x}) = \left| \mathbf{x} - \frac{\mathbf{A} + \mathbf{B}}{2} \right| / \frac{|\mathbf{A} - \mathbf{B}|}{2}.$$
 (6)

For the proof of the above statement see [6], Corollary 1 and the proof of Theorem 1A on p. 422. The next lemma provides a similar statement for *inner* points of \mathbf{K} .

LEMMA 2. Let $\mathbf{x} \in Int \mathbf{K}$. Then there exists a line \mathbf{L} passing through \mathbf{x} with $\mathbf{K} \cap \mathbf{L} = [\mathbf{A}, \mathbf{B}]$ such that (6) holds, and \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B} .

Note a slight difference in the statements of Lemmas 1 and 2: when $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}$ by Lemma 1 (6) holds for *every* **L** as above, while for $\mathbf{x} \in \text{Int } \mathbf{K}$ by Lemma 2 (6) holds for *some* **L** as above.

The first statement of Lemma 2 asserting that (6) holds for a certain line as above is a consequence of Proposition 2 in [5]. The second statement concerning parallel supporting hyperplanes is Proposition 1 of [5].

2. PROOFS

Proof of Theorem 1. The sufficiency in Theorem 1 is straightforward, it follows by a change of variables $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$ ($\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$) and Example 1.

Assume now that $\mathbf{K} \subset \mathbb{R}^d$ is such that $\gamma_{2n}(\mathbf{K}) = 1$, and $p_{2n}^* \in B_{2n}(\mathbf{K})$ is a corresponding universal majorant, so that

$$|p_{2n}(\mathbf{x})| \leq |p_{2n}^*(\mathbf{x})|, \qquad p_{2n} \in B_{2n}(\mathbf{K}), \quad \mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}.$$

Then it easily follows from (5) that

$$|p_{2n}^*(\mathbf{x})| \equiv T_{2n}(\alpha_{\mathbf{K}}(\mathbf{x})), \qquad \mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}.$$

In particular, we have that for every $\mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}$ either $p_{2n}^*(\mathbf{x}) \equiv T_n(\alpha_{\mathbf{K}}(\mathbf{x}))$, or $p_{2n}^*(\mathbf{x}) \equiv -T_n(\alpha_{\mathbf{K}}(\mathbf{x}))$. Thus we may assume that

$$p_{2n}^*(\mathbf{x}) \equiv T_{2n}(\alpha_{\mathbf{K}}(\mathbf{x})), \qquad \mathbf{x} \in \mathbb{R}^d \backslash \mathbf{K}.$$
(7)

First we shall verify that equality (7) holds for $\mathbf{x} \in \mathbf{K}$, as well. Choose any $\tilde{\mathbf{x}} \in \text{Int } \mathbf{K}$. Then by Lemma 2 there exists a line L through $\tilde{\mathbf{x}}$ with $\mathbf{L} \cap \mathbf{K} = [\mathbf{A}, \mathbf{B}]$ such that

$$\alpha_{\mathbf{K}}(\tilde{\mathbf{x}}) = \frac{\left| \frac{\tilde{\mathbf{x}} - \frac{\mathbf{A} + \mathbf{B}}{2} \right|}{\left| \frac{\mathbf{A} - \mathbf{B}}{2} \right|},\tag{8}$$

and K possesses parallel supporting hyperplanes at A and B. Let

$$\tilde{\mathbf{x}} = \frac{1 - \tilde{t}}{2} \,\mathbf{A} + \frac{1 + \tilde{t}}{2} \,\mathbf{B},$$

where it can be assumed that $0 \le \tilde{t} \le 1$. Then by (8), $\alpha_{\mathbf{K}}(\tilde{\mathbf{x}}) = \tilde{t}$. Moreover, by Lemma 1 for every $\mathbf{x} \in \mathbf{L} \setminus \mathbf{K}$ equality (6) holds, i.e. setting $\mathbf{x}_t = \frac{1-t}{2}\mathbf{A} + \frac{1+t}{2}\mathbf{B}$ we have $\alpha_{\mathbf{K}}(\mathbf{x}_t) = t$, t > 1. This and (7) yield that

$$p_{2n}^*(\mathbf{x}_t) \equiv T_{2n}(t), \qquad t > 1.$$

But of course the above equality of univariate polynomials has to extend from $\{t \in \mathbb{R}^1 : t > 1\}$ to the whole line, i.e.,

$$p_{2n}^*\left(\frac{1-t}{2}\mathbf{A} + \frac{1+t}{2}\mathbf{B}\right) \equiv T_{2n}(t), \qquad t \in \mathbb{R}.$$
(9)

In particular, setting in (9) $t = \tilde{t}$ we obtain $p_{2n}^*(\tilde{\mathbf{x}}) = T_{2n}(\tilde{t}) = T_{2n}(\alpha_{\mathbf{K}}(\tilde{\mathbf{x}}))$. Thus and by (7)

$$p_{2n}^*(\mathbf{x}) \equiv T_{2n}(\alpha_{\mathbf{K}}(\mathbf{x})), \qquad \mathbf{x} \in \mathbb{R}^d.$$
(10)

The next step is to verify that \mathbf{K} is central symmetric. Set

$$\alpha_0 := \inf_{\mathbf{x} \in \mathbf{K}} \alpha_{\mathbf{K}}(\mathbf{x}), \qquad \mathbf{K}_0 := \bigcap_{\alpha > \alpha_0} \mathbf{K}_{\alpha}.$$

Clearly, $\alpha_0 \ge 0$, $\mathbf{K}_0 \ne \emptyset$ and Int $\mathbf{K}_{\alpha} \ne \emptyset$, $\alpha > \alpha_0$. Furthermore, for every $x \in \mathbf{K}_0$ we have $\alpha_{\mathbf{K}}(\mathbf{x}) \le \alpha_0$, i.e., by minimality of α_0 it follows that $\alpha_{\mathbf{K}}(\mathbf{x}) = \alpha_0$ whenever $\mathbf{x} \in \mathbf{K}_0$. This last observation implies that \mathbf{K}_0 must be a singleton. Indeed, if \mathbf{a}^* , $\mathbf{b}^* \in \mathbf{K}_0$ ($\mathbf{a}^* \ne \mathbf{b}^*$) then $[\mathbf{a}^*, \mathbf{b}^*] \subset \mathbf{K}_0$, and hence $\alpha_{\mathbf{K}}(\mathbf{x}) = \alpha_0$ for $\mathbf{x} \in [\mathbf{a}^*, \mathbf{b}^*]$. This and (10) yield that $p_{2n}^* \equiv T_{2n}(\alpha_0)$ on the line \mathbf{L}^* through \mathbf{a}^* and \mathbf{b}^* , in an obvious contradiction with (10). Thus $\mathbf{K}_0 = \{\mathbf{a}^*\}$. Consider now a line \mathbf{L}^* through \mathbf{a}^* with $\mathbf{K} \cap \mathbf{L}^* = [\mathbf{A}^*, \mathbf{B}^*]$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A}^* and \mathbf{B}^* (Lemma 2). By (9) and (10) we have with $\mathbf{x}_t^* = \frac{1-t}{2}\mathbf{A}^* + \frac{1+t}{2}\mathbf{B}^*$

$$T_{2n}(t) = p_{2n}^*(\mathbf{x}_t^*) = T_{2n}(\alpha_{\mathbf{K}}(\mathbf{x}_t^*)), \qquad t \in \mathbb{R}^1.$$
(11)

As t increases from -1 to 1 the continuous function $\alpha_{\mathbf{K}}(\mathbf{x}_{i}^{*})$ decreases from 1 to α_{0} , and then increases from α_{0} to 1. Thus in view of (11) we must have $\alpha_{0} = 0$, and $\mathbf{a}^{*} = \mathbf{x}_{0}^{*} = (\mathbf{A}^{*} + \mathbf{B}^{*})/2$. (In particular, Int $\mathbf{K}_{\alpha} \neq \emptyset$ for every $\alpha > 0$.) Similarly for any $\mathbf{A} \in Bd \mathbf{K}$ there exists a $\mathbf{B} \in Bd \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A} and \mathbf{B} . Thus using again (9) and (10)

$$T_{2n}(t) = T_{2n}\left(\alpha_{\mathbf{K}}\left(\frac{1-t}{2}\,\mathbf{A} + \frac{1+t}{2}\,\mathbf{B}\right)\right), \qquad t \in \mathbb{R}.$$

Again, as t varies in $[-1, 1] \alpha_{\mathbf{K}}(\frac{1-t}{2}\mathbf{A} + \frac{1+t}{2}\mathbf{B})$ must decrease from 1 to 0 and then increase from 0 to 1. Hence $[\mathbf{A}, \mathbf{B}]$ must contain \mathbf{a}^* (otherwise

 $\alpha_{\mathbf{K}}(\frac{1-t}{2}\mathbf{A} + \frac{1+t}{2}\mathbf{B})$ can not attain 0), and, in addition, $\mathbf{a}^* = \frac{\mathbf{A} + \mathbf{B}}{2}$. Thus for every $\mathbf{A} \in \operatorname{Bd} \mathbf{K}$ the line through \mathbf{A} and \mathbf{a}^* exits \mathbf{K} at $\mathbf{B} = 2\mathbf{a}^* - \mathbf{A}$. This means that \mathbf{K} is central symmetric about \mathbf{a}^* .

We may assume now that $\mathbf{a}^* = \mathbf{0}$ and **K** is symmetric about the origin. Then $\alpha_{\mathbf{K}}(t\mathbf{x}) = t\alpha_{\mathbf{K}}(\mathbf{x})$ whenever $\mathbf{x} \in \mathbb{R}^d$ and t > 0. The polynomial p_{2n}^* can be written as $p_{2n}^*(\mathbf{x}) = \sum_{j=0}^{2n} h_j(\mathbf{x})$, where h_j is its *j*th homogeneous part, $0 \le j \le 2n$. Furthermore $T_{2n}(t) = \sum_{j=0}^{n} c_j t^{2j}$, where $c_j \in \mathbb{R}$, $0 \le j \le n$. Then for every $\mathbf{u} \in \mathbf{S}^{d-1}$ and t > 0

$$p_{2n}^{*}(t\mathbf{u}) = \sum_{j=0}^{2n} h_{j}(t\mathbf{u}) = \sum_{j=0}^{2n} t^{j}h_{j}(\mathbf{u}),$$
$$T_{2n}(\alpha_{\mathbf{K}}(t\mathbf{u})) = T_{2n}(t\alpha_{\mathbf{K}}(\mathbf{u})) = \sum_{j=0}^{n} c_{j}\alpha_{\mathbf{K}}^{2j}(\mathbf{u}) t^{2j}.$$

Hence using (10) we obtain

$$\sum_{j=0}^{2n} h_j(\mathbf{u}) \ t^j = \sum_{j=0}^n c_j \alpha_{\mathbf{K}}^{2j}(\mathbf{u}) \ t^{2j}, \qquad \mathbf{u} \in \mathbf{S}^{d-1}, \quad t > 0.$$

This means that $h_{2j}(\mathbf{u}) = c_j \alpha_{\mathbf{K}}^{2j}(\mathbf{u})$ for every $\mathbf{u} \in \mathbf{S}^{d-1}$. In particular

$$\alpha_{\mathbf{K}}^2(\mathbf{u}) = \frac{1}{c_1} h_2(\mathbf{u}) := H_2(\mathbf{u}), \qquad u \in \mathbf{S}^{d-1}.$$

Evidently, H_2 is a positive definite quadratic form, i.e.

$$K = \{\mathbf{x} \in \mathbb{R}^d : \alpha_{\mathbf{K}}(\mathbf{x}) \leq 1\} = \{\mathbf{x} \in \mathbb{R}^d : H_2(\mathbf{x}) \leq 1\}$$

is an ellipsoid. In addition, by (10) the only possible majorants are $\pm T_{2n}(\alpha_{\mathbf{K}}(\mathbf{x}))$.

Proof of Theorem 2. Let $\mathbf{K} \subset \mathbb{R}^d$ be a polytope. Consider $\mathbf{A}, \mathbf{B} \in \operatorname{Bd} \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes $\mathbf{H}_{\mathbf{A}}, \mathbf{H}_{\mathbf{B}}$ at \mathbf{A} and \mathbf{B} , and denote by $\mathcal{U}_{\mathbf{AB}}$ the set of normal vectors to such pairs of hyperplanes. Since \mathbf{K} is a polytope it is easy to see that for some $\mathbf{u} \in \mathcal{U}_{\mathbf{AB}}$ the corresponding pair of hyperplanes $\mathbf{H}_{\mathbf{A}}, \mathbf{H}_{\mathbf{B}}$ has the property that the faces $\mathbf{F}_{\mathbf{A}} = \mathbf{K} \cap \mathbf{H}_{\mathbf{A}}$ and $\mathbf{F}_{\mathbf{B}} = \mathbf{K} \cap \mathbf{H}_{\mathbf{B}}$ of the polytope \mathbf{K} contain a total of d-1 linearly independent vectors. Let $\mathcal{U}(\mathbf{K}) := {\mathbf{u}_1, ..., \mathbf{u}_N} \subset \mathbf{S}_+^{d-1} := {\mathbf{y} = (y_1, ..., y_d) \in \mathbf{S}^{d-1} : y_1 \ge 0}$ be the set of normal vectors to pairs of hyperplanes with the

above properties. Since every $\mathbf{u}_j \in \mathcal{U}(\mathbf{K})$, $1 \leq j \leq N$, is uniquely determined by the corresponding pair of faces of **K** specified above it follows that

$$N \leqslant \frac{1}{2} \sum_{j=1}^{d-2} f_j(\mathbf{K}) f_{d-j-1}(\mathbf{K}) + f_{d-1}(\mathbf{K}).$$
(12)

Moreover, $\mathscr{U}(\mathbf{K}) \cap \mathscr{U}_{\mathbf{AB}} \neq \emptyset$ whenever **K** possesses parallel supporting hyperplanes at **A**, **B** \in Bd **K**. Furthermore, for every $\mathbf{u}_j \in \mathscr{U}(\mathbf{K})$ select some \mathbf{A}_j , $\mathbf{B}_j \in$ Bd **K** such that $\mathbf{u}_j \in \mathscr{U}_{\mathbf{A}_i\mathbf{B}_j}$, $1 \leq j \leq N$.

Finally, consider the polynomial $\tilde{T}_{2n}(t) = (T_{2n}(t)+1)/2 \in P_{2n}^1$. Obviously $\tilde{T}_{2n} \ge 0$ on \mathbb{R}^1 , $\tilde{T}_{2n} \le 1$ on [-1, 1], and $T_{2n} \le 2\tilde{T}_{2n}$ on $\mathbb{R}^1 \setminus [-1, 1]$. Now we set

$$p_{2n}^{*}(\mathbf{x}) = \frac{1}{N} \sum_{j=1}^{N} \tilde{T}_{2n} \left(\frac{\left\langle x - \frac{\mathbf{A}_{j} + \mathbf{B}_{j}}{2}, \mathbf{u}_{j} \right\rangle}{\left\langle \frac{\mathbf{A}_{j} - \mathbf{B}_{j}}{2}, \mathbf{u}_{j} \right\rangle} \right).$$
(13)

Clearly, $p_{2n}^* \in P_{2n}^d$. Moreover, we claim that $|p_{2n}^*| \leq 1$ on **K**, i.e., $p_{2n}^* \in B_{2n}(\mathbf{K})$. Indeed, since **K** possesses parallel supporting hyperplanes at \mathbf{A}_j and \mathbf{B}_j with normal \mathbf{u}_j we have (assuming, for instance that $\langle \mathbf{A}_j, \mathbf{u}_j \rangle < \langle \mathbf{B}_j, \mathbf{u}_j \rangle \rangle \langle \mathbf{A}_j, \mathbf{u}_j \rangle \leq \langle \mathbf{X}, \mathbf{u}_j \rangle \leq \langle \mathbf{B}_j, \mathbf{u}_j \rangle$, $\mathbf{x} \in \mathbf{K}$. This easily implies

$$\left|\left\langle \mathbf{x} - \frac{\mathbf{A}_j + \mathbf{B}_j}{2}, \mathbf{u}_j \right\rangle\right| \leq \left|\left\langle \frac{\mathbf{A}_j - \mathbf{B}_j}{2}, \mathbf{u}_j \right\rangle\right|, \quad \mathbf{x} \in \mathbf{K}$$

Since $|\tilde{T}_{2n}| \leq 1$ on [-1, 1] we obtain by (13) that $p_{2n}^* \in B_{2n}(\mathbf{K})$. Now we need to show that p_{2n}^* satisfies (1) with a proper γ . Consider an arbitrary $p_{2n} \in B_{2n}(\mathbf{K})$ and $\mathbf{x}^* \in \mathbb{R}^d \setminus \mathbf{K}$. By Lemma 1 there exists a line \mathbf{L} passing through \mathbf{x}^* with $\mathbf{K} \cap \mathbf{L} = [\mathbf{A}^*, \mathbf{B}^*]$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{A}^* , $\mathbf{B}^* \in \text{Bd } \mathbf{K}$. As it was observed above we can choose this pair of hyperplanes $\mathbf{H}_{\mathbf{A}^*}$, $\mathbf{H}_{\mathbf{B}^*}$ (keeping \mathbf{A}^* , \mathbf{B}^* fixed) so that some $\mathbf{u}_j \in \mathcal{U}(\mathbf{K}), 1 \leq j \leq N$, is the normal to these hyperplanes. Then by (6) using that \mathbf{x}^* , \mathbf{A}^* , $\mathbf{B}^* \in \mathbf{L}$

$$\alpha_{\mathbf{K}}(\mathbf{x}^*) = \frac{\left|\mathbf{x}^* - \frac{\mathbf{A}^* + \mathbf{B}^*}{2}\right|}{\frac{|\mathbf{A}^* - \mathbf{B}^*|}{2}} = \left|\frac{\left\langle \mathbf{x}^* - \frac{\mathbf{A}^* + \mathbf{B}^*}{2}, \mathbf{u}_j \right\rangle}{\left\langle \frac{\mathbf{A}^* - \mathbf{B}^*}{2}, \mathbf{u}_j \right\rangle}\right|.$$
 (14)

Recall that earlier we have already chosen A_j , B_j from the pair of hyperplanes H_{A^*} , H_{B^*} (with normal u_j). Hence without loss of generality, A^* , $A_j \in H_{A^*}$, B^* , $B_j \in H_{B^*}$, i.e., $A^* - A_j$ and $B^* - B_j$ are normal to u_j . Thus using (5), (14) and (13) we have for $p_{2n} \in B_{2n}(K)$

$$|p_{2n}(\mathbf{x}^*)| \leq T_{2n}(\alpha_{\mathbf{K}}(x^*)) \leq 2\tilde{T}_{2n}(\alpha_{\mathbf{K}}(\mathbf{x}^*))$$
$$= 2\tilde{T}_{2n}\left(\frac{\left\langle \mathbf{x}^* - \frac{\mathbf{A}_j + \mathbf{B}_j}{2}, \mathbf{u}_j \right\rangle}{\left\langle \frac{\mathbf{A}_j - \mathbf{B}_j}{2}, \mathbf{u}_j \right\rangle}\right) \leq 2Np_{2n}^*(\mathbf{x}^*).$$

Finally by (12) we arrive at estimate (3).

If remains to verify the sharper bound $\gamma_{2n}(\mathbf{K}) \leq f_{d-1}(\mathbf{K})$ in case when **K** is a central symmetric polytope. Assume that **0** is the center of symmetry of **K**. Clearly, **K** has $M := f_{d-1}(\mathbf{K})/2$ pairs of parallel (d-1)-dimensional faces. Denote by $\boldsymbol{\omega}_j$, $1 \leq j \leq M$, the normals to these pairs of hyperplanes, and select any segments $[-\mathbf{A}_j, \mathbf{A}_j]$, $1 \leq j \leq M$ with endpoints in these pairs of faces. Finally, set

$$\tilde{p}_{2n}(\mathbf{x}) = \frac{1}{M} \sum_{j=1}^{M} \tilde{T}_{2n} \left(\frac{\langle \mathbf{x}, \mathbf{\omega}_j \rangle}{\langle \mathbf{A}_j, \mathbf{\omega}_j \rangle} \right).$$

As above, it follow that $\tilde{p}_{2n} \in B_{2n}(\mathbf{K})$. Now, for any $\mathbf{x}^* \in \mathbb{R}^d \setminus \mathbf{K}$ the line $\mathbf{L} := \{t\mathbf{x}^* : t \in \mathbb{R}^1\}$ intersects Bd **K** at some points $\pm \mathbf{B}$ which belong to a pair of parallel (d-1)-dimensional faces of **K** with normal $\boldsymbol{\omega}_k$ for some $1 \leq k \leq M$. Then $\mathbf{B} - \mathbf{A}_k \perp \boldsymbol{\omega}_k$ and proceeding as above we can show that for any $p_{2n} \in B_{2n}(\mathbf{K}) |p_{2n}(\mathbf{x}^*)| \leq f_{d-1}(\mathbf{K}) \tilde{p}_{2n}(\mathbf{x}^*)$, i.e., $\gamma_{2n}(\mathbf{K}) \leq f_{d-1}(\mathbf{K})$.

Proofs of Theorems 3 and 4. Now we proceed to proving Theorems 3 and 4. Their proofs are based on the "polytopal" estimate (3) for $\gamma_{2n}(\mathbf{K})$ on one side, and some known results on the rate of approximation of convex bodies by polytopes. One such result proved in [3] (see also [4]) asserts that for any convex body $\mathbf{K} \subset \mathbb{R}^d$ ($d \ge 2$) and $N \in \mathbb{N}$ there exists a polytope **D** with $f_0(\mathbf{D}) = N$ vertices so that

$$\varrho(\mathbf{K}, \mathbf{D}) \leqslant \frac{c}{N^{2/(d-1)}}$$
(15)

with an absolute constant c > 0. (Here as above $\rho(\mathbf{K}, \mathbf{D})$ stands for the Hausdorff distance between corresponding sets.) The approximating polytope **D** is constructed in [3] to be circumscribed to **K**, it can be modified in an obvious way to be inscribed into **K**. Moreover it is shown

in [2] that if **K** is C^2_+ then for any $M \in \mathbb{N}$ there exists an inscribed polytope **D** with $\max_{0 \le j \le d-1} f_j(\mathbf{D}) \le M$ such that

$$\varrho(\mathbf{K}, \mathbf{D}) \leqslant \frac{c_1}{M^{2/(d-1)}} \tag{16}$$

with some $c_1 > 0$ depending on **K**. In principle, (16) provides a stronger bound than (15) since it is known (see e.g. [8, p. 257]) that for any polytope **D**

$$f_i(\mathbf{D}) \leqslant c(d) f_0(\mathbf{D})^{\lfloor d/2 \rfloor}, \qquad 1 \leqslant j \leqslant d-1, \tag{17}$$

with some c(d) depending only on d.

We shall also need the following well known corollary of Chebyshev Inequality (2): if $p_n \in P_n^1$ is a univariate polynomial and $|p_n| \leq 1$ on [-1, 1] then

$$|p_n(t)| \leqslant e^{c_0 n \sqrt{\delta}}, \quad |t| \leqslant 1 + \delta \qquad (0 < \delta < 1) \tag{18}$$

with some absolute constant $c_0 > 0$.

After these preliminaries we turn to the proof of Theorem 3. Consider an arbitrary convex body **K** in \mathbb{R}^d $(d \ge 2)$, and let $\mathbf{D} \subset \mathbf{K}$ be an inscribed polytope with $f_0(\mathbf{D}) = N$ vertices so that (15) holds.

By estimate (3) of Theorem 2 and (17) we have $\gamma_{2n}(\mathbf{D}) \leq c_1(d) N^d$. Thus there exists a universal majorant $p_{2n}^* \in B_{2n}(\mathbf{D})$ such that

$$|p_{2n}(\mathbf{x})| \leq c_1(d) N^d |p_{2n}^*(\mathbf{x})|, \qquad p_{2n} \in B_{2n}(\mathbf{D}), \quad x \in \mathbb{R}^d \setminus \mathbf{D}.$$
(19)

Since $|p_{2n}^*| \leq 1$ on $\mathbf{D} \subset \mathbf{K}$ it follows by (15) and (18) that

$$\|p_{2n}^*\|_{C(\mathbf{K})} \leq \exp[c_2 n N^{1/(1-d)}]$$
(20)

with some $c_2 > 0$ depending on d and \mathbf{K} . Hence setting $N := [n^{d-1}] + 1$ and $\tilde{p}_{2n} := e^{-c_2} p_{2n}^*$ we obtain by (20) that $|\tilde{p}_{2n}| \leq 1$ on \mathbf{K} , i.e., $\tilde{p}_{2n} \in B_{2n}(\mathbf{K})$. Moreover, using (19) we have for every $p_{2n} \in B_{2n}(\mathbf{K}) \subset B_{2n}(\mathbf{D})$ and $\mathbf{x} \in (\mathbb{R}^d \setminus \mathbf{K}) \subset (\mathbb{R}^d \setminus \mathbf{D})$

$$|p_{2n}(\mathbf{x})| \leq c_1(d) e^{c_2} N^d |\tilde{p}_{2n}(\mathbf{x})| \leq c_3 n^{d(d-1)} |\tilde{p}_{2n}(\mathbf{x})|.$$

This verifies the upper bound (4) of Theorem 3.

The proof of Theorem 4 follows similarly by using estimate (16) with $M = \max_{0 \le j \le d-1} f_j(\mathbf{D})$ instead of (15). This together with (3) yields the bound $\gamma_{2n}(\mathbf{D}) = O(M^2)$. Finally, setting $M := \lfloor n^{d-1} \rfloor + 1$ we arrive at $\gamma_{2n}(\mathbf{K}) = O(n^{2(d-1)})$. This completes the proof of Theorems 3 and 4.

Remark. It can be shown that when **K** is central symmetric the approximating polytopes satisfying (15) and (16) can also be chosen to be central symmetric. Moreover, for central symmetric polytopes **D** by Theorem 2 the sharper estimate $\gamma_{2n}(\mathbf{D}) \leq f_{d-1}(\mathbf{D})$ holds. This bound leads to an improvement of the above estimates for $\gamma_{2n}(\mathbf{K})$. Indeed similarly to the proofs of Theorems 3 and 4 we can verify that in this case $\gamma_{2n}(\mathbf{K}) = O(n^{d(d-1)/2})$, and $\gamma_{2n}(\mathbf{K}) = O(n^{d-1})$ if, in addition, **K** is also C_{+}^2 .

Proof of Theorem 5. Consider an arbitrary point \mathbf{x}^* on the boundary of convex body **K**. Let $p_{2n}^* \in B_{2n}(\mathbf{K})$ be a universal majorant in $B_{2n}(\mathbf{K})$. Then by Theorem 3

$$|p_{2n}(\mathbf{x})| \leq cn^{d(d-1)} |p_{2n}^*(\mathbf{x})|, \qquad p_{2n} \in B_{2n}(\mathbf{K}), \quad \mathbf{x} \in \mathbb{R}^d \setminus \mathbf{K}.$$
(21)

We claim that there exists a point $\tilde{\mathbf{x}} \in \mathbb{R}^d$ with $|\mathbf{x}^* - \tilde{\mathbf{x}}| = O((\frac{\log n}{n})^2)$ such that $|p_{2n}^*| \tilde{\mathbf{x}}| = 1$. In order to show this assume that $|p_{2n}^*| \leq 1$ in some ball $\mathbf{B}_{\delta}(\mathbf{x}^*)$ with center at x^* and radius $\delta > 0$. Our claim will follow if we verify that such a δ must satisfy $\delta \leq c(\log n/n)^2$ for some c > 0 independent of n. There exists $y^* \in \text{Bd } \mathbf{K}$ such that \mathbf{K} possesses parallel supporting hyperplanes at \mathbf{x}^* and \mathbf{y}^* with a normal $\mathbf{u}^* \in \mathbf{S}^{d-1}$. Let \mathbf{L} be the line through \mathbf{x}^* and \mathbf{y}^* . We may assume that $|\mathbf{x}^* - \mathbf{y}^*| = 2$. (Clearly, $|\mathbf{x}^* - \mathbf{y}^*| \geq \omega(\mathbf{K})$, where $\omega(\mathbf{K})$ is the minimal distance between parallel supporting hyperplanes to \mathbf{K} . Moreover $|\mathbf{x}^* - \mathbf{y}^*| \leq d(\mathbf{K}) := \max\{|\mathbf{x} - \mathbf{y}| : \mathbf{x}, \mathbf{y} \in \mathbf{K}\}$.) Set now $\mathbf{x}_j := (1 + j\delta/2) \mathbf{x}^* - j\delta \mathbf{y}^*/2$, j = 1, 2. Evidently, $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{L} \setminus \mathbf{K}$, $|\mathbf{x}_1 - \mathbf{x}^*| = \delta$, and $|\mathbf{x}_2 - \mathbf{x}^*| = 2\delta$.

Consider the polynomial

$$p_{2n}(\mathbf{x}) := T_{2n}\left(\frac{\left\langle \mathbf{x} - \frac{\mathbf{x}^* + \mathbf{y}^*}{2}, \mathbf{u}^* \right\rangle}{\left\langle \frac{\mathbf{x}^* - \mathbf{y}^*}{2}, \mathbf{u}^* \right\rangle}\right).$$

As in the proof of Theorem 2 it can be shown that $|p_{2n}| \leq 1$ on **K**, i.e., $p_{2n} \in B_{2n}(\mathbf{K})$. Then by (21) for $\mathbf{x}_2 \in \mathbb{R}^d \setminus \mathbf{K}$

$$|p_{2n}^{*}(\mathbf{x}_{2})| \geqslant \frac{|p_{2n}(\mathbf{x}_{2})|}{cn^{d(d-1)}} = \frac{T_{2n}(1+2\delta)}{cn^{d(d-1)}}.$$
(22)

On the other hand since $|\mathbf{x}^* - \mathbf{x}_1| = \delta$ and $|p_{2n}^*| \leq 1$ on $\mathbf{B}_{\delta}(\mathbf{x}^*) \cup \mathbf{K}$, we obtain, in particular, that $|p_{2n}^*| \leq 1$ on $[\mathbf{y}^*, \mathbf{x}_1]$, where $|\mathbf{y}^* - \mathbf{x}_1| = (1 + \frac{\delta}{2}) |\mathbf{x}^* - \mathbf{y}^*| = 2 + \delta$. Recall, that \mathbf{y}^* , \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbf{L}$ where $|(\mathbf{y}^* + \mathbf{x}_1)/2 - \mathbf{x}_2| = 1 + 3\delta/2$. Now, applying (2) to the univariate polynomial

 $p_{2n}^*(t(\mathbf{x}_1 - \mathbf{y}^*) + \mathbf{x}_1) \in B_n([\mathbf{y}^*, \mathbf{x}_1]), |\mathbf{x}_1 - \mathbf{y}^*| = 2 + \delta$, at the point \mathbf{x}_2 with $|(\mathbf{x}_1 + \mathbf{y}^*)/2 - \mathbf{x}_2| = 1 + 3\delta/2$ yields

$$|p_{2n}^*(\mathbf{x}_2)| \leq T_{2n}(1+\delta).$$

This together with (22) implies

$$cn^{d(d-1)}T_{2n}(1+\delta) \ge T_{2n}(1+2\delta).$$
 (23)

Furthermore, it is well known (see [1, p. 30]) that

$$\frac{1}{2}(t+\sqrt{t^2-1})^{2n} \leqslant T_{2n}(t) \leqslant (t+\sqrt{t^2-1})^{2n}, \qquad t>1.$$

This and (23) yield for $0 < \delta \leq \delta_0$

$$cn^{d(d-1)}(1+\sqrt{3\delta})^{2n} \ge \frac{1}{2}(1+2\sqrt{\delta})^{2n}.$$

Hence

$$1 + c_d \frac{\log n}{n} \ge (2cn^{d(d-1)})^{1/2n} \ge \frac{1 + 2\sqrt{\delta}}{1 + \sqrt{3\delta}} \ge 1 + c_0\sqrt{\delta},$$

i.e. we obtain that $\delta = O((\frac{\log n}{n})^2)$. Thus since $|p_{2n}^*(\mathbf{x}^*)| \leq 1$ there exists $\tilde{\mathbf{x}}$ such that $|\mathbf{x}^* - \tilde{\mathbf{x}}| = O((\log n/n)^2)$ and $|p_{2n}^*(\tilde{\mathbf{x}})| = 1$. Consider now the polynomial $g_{4n} = (p_{2n}^*)^2 - 1 \in P_{4n}^d$. As we have shown above for every $\mathbf{x}^* \in Bd \mathbf{K}$ there exists an $\tilde{\mathbf{x}}$ such that $g_{4n}(\tilde{\mathbf{x}}) = 0$ and $|\mathbf{x}^* - \tilde{\mathbf{x}}| \leq c(\log n/n)^2$. This concludes the proof.

SOME OPEN PROBLEMS

The results proved above provide some insight on the magnitude of $\gamma_{2n}(\mathbf{K})$, but a number of questions remains open. Namely it would be interesting to determine for what convex bodies \mathbf{K}

$$\sup_{n \in \mathbb{N}} \gamma_{2n}(\mathbf{K}) < \infty.$$
 (24)

We have seen above that (24) holds for ellipsoids and polytopes. Using similar methods we can verify that (24) is true for finite intersections of central-symmetric polytopes and ellipsoids having the same center. This means that (24) holds not only for ellipsoids and polytopes. Is (24) true for

every convex body $\mathbf{K} \subset \mathbb{R}^d$? Another open problem consists in characterizing those compact sets $\mathbf{K} \subset \mathbb{R}^d$ for which $\gamma_{2n}(\mathbf{K})$ has subexponential growth, i.e.,

$$\limsup_{n \to \infty} \gamma_{2n}(\mathbf{K})^{1/n} = 1.$$
⁽²⁵⁾

Theorem 3 implies, in particular, that (25) holds for every convex body $\mathbf{K} \subset \mathbb{R}^d$.

REFERENCES

- P. Borwein and T. Erdélyi, "Polynomials and Polynomial Inequalities," Springer-Verlag, Berlin/New York, 1995.
- 2. K. Böröcky, Jr., Polytopal approximation bounding the number of k-faces, manuscript.
- E. M. Bronshtein and L. D. Ivanov, The approximation of convex sets by polyhedra, Sibirsk. Math. Zh. 16 (1975), 1110–1112. [Siberian Math. J. 16 (1975), 852–853.]
- P. M. Gruber, Aspects of approximation of convex bodies, in "Handbook of Convex Geometry A," pp. 319–345, North-Holland, Amsterdam, 1993.
- A. Kroó and Sz. Révész, On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory 99 (1999), 134–152.
- A. Kroó and D. Schmidt, Some extremal problems for multivariate polynomials on convex bodies, J. Approx. Theory 90 (1997), 415–434.
- T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of approximation and minimization, J. Soc. Ind. Appl. Math. 9 (1961), 670–699.
- 8. G. M. Ziegler, "Lectures on Polytopes," Springer-Verlag, Berlin/New York, 1995.